Universitätssiegel
Förderung
DFG, SPP 1894/1 – Volunteered Geographic Information
 
Project Lead
 
Wiss. Mitarbeiter
 

Räumliche Korrelationen in Social-Media-Daten

Quantifizierung der räumlichen Korrelationsstrukturen in georeferenzierten Twitter Feeds

Soziale Medien erwiesen sich als ergiebige und reichhaltige VGI Datenquelle für unterschiedliche Forschungsgebiete. Der vorliegende Antrag zielt auf die Erweiterung der wissenschaftlichen Methoden zur Identifikation räumlicher Zusammenhänge v.a. aus Twitter Daten. Für deren Analyse müssen raumstatistische Methoden geeignet angepasst und erweitert werden, um die inhärenten Charakteristika der Tweets und der sie abbildenden geographischen Phänomene besser zu repräsentieren. Theoretisch bauen die Ansätze auf die Theorie räumlicher Autokorrelation auf, der traditionelle Ansatz zur Quantifizierung räumlicher Strukturen.

Die erste Forschungsfrage befasst sich mit der Integration räumlicher Autokorrelation und der stochastischen Geometrie von Tweets. Letztere Eigenschaft wird traditionell über Methoden der Punktmusteranalyse untersucht. Die vorgeschlagenen Ansätze verbinden Prinzipien beider Theoriegebäude. In einer initialen empirischen Untersuchung werden zunächst die Einflüsse der geometrischen Stochastizität auf Ergebnisse konventioneller Maße räumlicher Autokorrelation ermittelt. Dies umfasst die Modellierung lokaler Punktmustern sowie eine Monte Carlo Simulation. Damit sind Rückschlüsse auf die räumliche Variation der Interaktion in realweltlichen sozialen Aktivitäten möglich. Im Anschluss fließen die Ergebnisse in ein adaptiertes Maß zur Korrelationsermittlung ein. Dieses wird über den Einbezug von Prinzipien von Gibbs- und Cox Punktprozessen eine realistische Ermittlung von Korrelationsstrukturen erlauben.

Eine zweite Problemstellung fokussiert auf die Berücksichtigung sich gegenseitig überlagernder Prozessrepräsentationen. Diese entstehen durch die autonomen Nutzer, welche raumzeitlich überlagernde Prozessrepräsentationen erfassen. Zunächst müssen die für eine Analyse relevanten und irrelevanten Tweets getrennt werden. Ein zu untersuchender Ansatz basiert dabei auf der Dempster-Shafer Theorie und Dirichlet Prozessen und ist als Hypothesentest gestaltet. Dieses mündet Verfahren in eine Methodik zur Ableitung von entflochtenen Korrelationsstrukturen. Dieses gestaltet sich in Form einer partiellen räumlichen Autokorrelation und verhindert die Vermischung von potentiell beziehungslosen Phänomenen.

Im Gegensatz zu den ersten beiden Aspekten adressiert eine dritte Aufgabe die Analyse von zusammengesetzten sozialen Prozessen. Hierfür müssen geeignete Strategien für die Aggregation von Tweets erarbeitet werden. Hierzu sollen traditionelle Clusteringverfahren, ein Shrink-and-Grow Ansatz sowie eine Beschreibung über Indizes der Punktmusteranalyse untersucht werden. Zudem werden Zusammenhänge zwischen diesen aggregierten Prozessen sowie deren Einfluss auf ihre unmittelbare Umgebung untersucht.

Diese Ansätze erlauben eine detailliertere Analyse sozialer Phänomene und ihrer räumlichen Wirkmechanismen. Durch den Einbezug der Spezifika sozialer Medien werden zudem Methoden zur räumlichen Analyse soziotechnischer Systeme stark verbessert.

News
24.11.2017 12:36
GIScience Colloquium talk on Event Detection from Geo-tagged Twitter Data by Diao Lin

we cordially invite everybody interested to our next open GIScience colloquium talk State of the Art of Event Detection from Geo-tagged Twitter Data Diao Lin Chair of Cartography, Technical University of Munich Time and date: Mon, November 27, 2:15 pm Venue: INF 348, Room 015, Department of Geography, Heidelberg University The speaker tries to give a structured and comprehensive overview of [...]

09.10.2017 19:14
Healthy Routing presented at the SemGeoSoc Workshop

The current status of ou Healthy Routing research was presented in the SemGeoSoc Workshop hosted by the Zürich University and organized by prominent researchers in the area of geoinformatics. The workshop offered the opportunity for presenting and discussing ongoing work on the areas of location-based services supported by VGI, social media, citizen & science and [...]

15.05.2017 12:43
GIScience contributions to 20th AGILE conference in Wageningen, Netherlands

This year AGILE celebrated its 20th birthday and conference from May 10 - 12 at Wageningen University, Netherlands. The conference organizers chose “societal geo-information” to be the main theme of the research presented. The GIScience Research Group Heidelberg was represented by its members Tessio Novack, Franz-Benjamin Mocnik and Benjamin Herfort. On Tuesday, the day before the [...]

07.05.2017 09:17
Monitoring and Assessing Post-Disaster Tourism Recovery Using Geotagged Social Media Data

Tourism is a economically highly important industry. It is, however, vulnerable to disaster events. Geotagged social media data, as one of the forms of volunteered geographic information (VGI), has been widely explored to support the prevention, preparation, and response phases of disaster management, while little effort has been put on the recovery phase. A recently [...]

02.05.2017 17:49
ISPRS Best Paper Award on human activity patterns for Dr. Wei Huang

Recently the paper “Understanding human activity patterns based on space-time-semantics” by Wei Huang, and Songnian Li (Ryerson University, Toronto, Canada) has been selected as the best paper published in 2016 (volumes 111-122) in the ISPRS Journal of Photogrammetry and Remote Sensing. Dr. Wei Huang is since late 2016 team member of the GIScience Research Group. [...]

22.04.2017 17:28
Workshop on “spatial urban analytics with user-generated geodata”

We’ve recently finalised the programme of a workshop on “spatial urban analytics with user-generated geographic information”. The event is conjoined with the 2017 International Conference at the Royal Geographical Society in London and is co-chaired by René Westerholt (GIScience Heidelberg). We received methodological as well as empirical contributions, which reflects the breadth of the complex [...]

26.03.2017 22:08
Impressions from CASper Workshop and PerCom

Last week saw the Workshop on Crowd Assisted Sensing, Pervasive Systems and Communications (CASPer 2017) at the 15th IEEE International Conference on Pervasive Computing and Communications. Here you find some impressions from the event. Alexander Zipf participated as invited panelist at the panel session of CASPer 2017. The panel discusses processing unstructured Big Data and [...]

20.03.2017 10:58
A graph-based strategy for matching points-of-interests from different VGI sources

Several urban studies have been increasingly relying on spatial data provided by Volunteered Geographic Information (VGI) sources. The matching of features across different VGI projects may serve to assess and improve the reliability and completeness of VGI data. In a recent study, we first provide a short discussion on the similarity measures often used for [...]

10.03.2017 19:46
Big Data Analytics Panel at the International Workshop on Crowd Assisted Sensing, Pervasive Systems and Communications (CASPer 2017) at IEEE PerCom

Crowd assisted sensing and crowdsourcing, as well as their underlying pervasive systems and communications are a fast growing research area and one of the enabling technologies of smart cities and smart infrastructures, as well as important building blocks in healthcare monitoring and vehicular technologies. Crowd assisted sensing (often called participatory sensing) opens new ways for [...]

06.03.2017 10:27
Towards using Volunteered Geographic Information to monitor post-disaster recovery in tourist destinations

The aftereffects of disaster events are significant in tourist destinations where they do not only lead to destruction and casualties, but also long-lasting economic harms. The public perception causes tourists to refrain from visiting these areas and recovery of the tourist industry, a major economic sector, to become challenging. To improve this situation, current information [...]

Seitenbearbeiter: Webmaster-Team
Letzte Änderung: 13.12.2016
zum Seitenanfang/up