Dr.-Ing. Tessio Novack
Information on archiving:
Selected pages of this website are being preserved for archiving purposes. Since their contents are not getting updated anymore, the given information may be out of date or inaccurate.
Dr.-Ing. Tessio Novack was a senior researcher at the GIScience Research Group of the Institute of Geography in Heidelberg
Research Interests
- Volunteered Geographic Information
- Geodata quality analysis and integration
- Spatial statistics
- Machine learning
- Land cover and land use analysis
- Remote Sensing
Curriculum Vitae
2002–2006 Bachelor of Science in Geography, University of Sao Paulo (USP, Brazil).
2005–2006 Scientific Initiation at the Institute of Astronomy, Geophysics and Atmospheric Sciences (IAG-USP, Brazil)
2005–2006 GIS Specialist at the Brazilian Institute of Geography and Statistics (IBGE)
2006–2006 GIS Specialist at the Sao Paulo Forestry Institute (IF-SP)
2007–2009 Master of Science in Remote Sensing, National Institute for Space Research (INPE, Brazil)
2009–2010 Junior Researcher at the National Institute for Space Research (INPE, Brazil)
2011–2016 Doktor-Ingenieur in Remote Sensing, Technische Universität München (Munich, Germany), Chair of Photogrammetry and Remote Sensing (Prof. Dr.-Ing. Uwe Stilla)
Since 07.2016: Senior researcher at the GIScience research group, Heidelberg University (Germany)
Scholarships
2005–2006 Scientific Initiation research financed by the Sao Paulo Research Foundation (FAPESP, Brazil)
2007–2009 Master studies financed by the National Council of Technological and Scientific Development (CNPq, Brazil)
2010–2015 Doctoral research financed by the Deutscher Akademischer Austauschdienst (DAAD, Germany)
Main Publications
Book chapter
- Novack, T., Kux, H. J. H., Freitas, C. (2011) Estimation of population density of census sectors using remote sensing data and spatial regression In: Geocomputation, Sustainability and Environmental Planning.1 ed. Berlin: Springer Verlag, v.348, pp. 111-122.
Journal papers
- Juhász, L., Novack T., Hochmair, H., Qiao, S. (2020): Cartographic Vandalism in the Era of Location-Based Games—The Case of OpenStreetMap and Pokémon GO ISPRS International Journal of Geo-Information. 2020; 9(4):197.
- Novack T., Vorbeck L., Lorei H., Zipf A. (2020): Towards Detecting Building Facades with Graffiti Artwork Based on Street View Images. ISPRS International Journal of Geo-Information. 2020; 9(2):98.
- Hu, X., Ding, L., Shang, J., Fan, H., Novack, T., Noskov, A. & Zipf, A. (2020): Data-driven approach to learning salience models of indoor landmarks by using genetic programming, International Journal of Digital Earth.
- Novack, T., Wang, Z., Zipf, A. (2018): A System for Generating Customized Pleasant Pedestrian Routes Based on OpenStreetMap Data. Sensors 2018, 18, 3794.
- Novack, T., Stilla, U. (2018): Classifying the Built-Up Structure of Urban Blocks with Probabilistic Graphical Models and TerraSAR-X Spotlight Imagery. Remote Sens. 2018, 10, 842.
- Novack, T., Peters, R., Zipf, A. (2018): Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets International Journal of Geo-Information, Vol. 7 (3), pp. 117-134
- Novack, T., Stilla, U. (2018): Context-Based Classification of Urban Blocks According to Their Built-up Structure PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, Vol. 1 (5), pp. 1-12.
- Novack, T., Kux, H. J. H., Feitosa, R. Q., Costa, G. A. O. P. (2014) A knowledge-based, transferable approach for block-based urban land-use classification. International Journal of Remote Sensing. v.35, p.4739 – 4757.
- Novack, T., Esch, T., Kux, H. J. H., Stilla, U. (2011) Machine learning comparison between WorldView-2 and QuickBird-2-simulated imagery regarding object-based urban land cover classification. Remote Sensing, v.3, p.2263 – 2282.
- Novack, T., Kux, H. J. H. (2010) Urban land cover and land use classification of an informal settlement area using the open-source knowledge-based system InterIMAGE. Journal of Spatial Science, v.55, p.23 – 41.
- Novack, T., Hayakawa, E.H., Bertani, T.C., Zani, H. (2010) Classificação de lagoas no Pantanal da Nhecolândia utilizando um sistema livre de análise orientada a objeto. Revista Geográfica Acadêmica, v. 4, p. 32-45.
Peer-reviewed conference papers
- Novack, T., Grinberger, A. Y., Schultz, M., Zipf, A.,Mooney, P. (2019): The geographical and cultural aspects of geo-information: an introduction. Proceedings of the GeoCultGIS - Geographic and Cultural Aspects of Geo-Information: Issues and Solutions, Limassol (Cyprus)
- Novack, T., Stilla, U. (2015) Discrimination of urban settlement types based on space-borne SAR datasets and a conditional random fields model In: PIA15+HRIGI15 – Joint ISPRS conference. Munich (Germany)
- Novack, T., Stilla, U. (2014) Classification of urban settlement types based on space-borne SAR datasets. In: ISPRS Annals Photogramm. Remote Sens. Spatial Inf. Sci., II-7. Istanbul (Turkey)
- Novack, T., Kux, H. J. H., Esch, T., Stilla, U. (2011) Feature selection analysis of WorldView-II data for similar urban objects distinction. In: Joint Urban Remote Sensing Event, 2011. Proceedings of the Joint Urban Remote Sensing Event 2011. Munich (Germany)
- Novack, T., Kux, H. J. H., Feitosa, R. Q., Costa, G. A. O. P. (2010) Per-block urban land use interpretation using VHR data and the knowledge-based system InterIMAGE In: Proceedings of the 3rd Geographic Object-based Image Analysis (GEOBIA). Ghent (Belgium)
- Novack, T., Kux, H. J. R., Monteiro, A. M. V., Pinho, C. (2008) Estimation of population density using high resolution remote sensing data and spatial regression techniques: a case study in São Paulo city (Brazil) In: II Simpósio Brasileiro de Ciências Geodésicas e Tecnologias da Geoinformação. Recife (Brazil)
- Novack, T., Fonseca, L. M. G., Kux, H. J. R. (2008) Quantitative comparison of segmentation results from IKONOS images sharpened by different fusion and interpolation techniques In: Proceedings of the 2nd Geographic Object-based Image Analysis (GEOBIA). Calgary (Canada)
- Novack, T., Stilla, U. (2014) Discriminative Learning of conditional random fields applied to the classification of urban settlement types In: Gemeinsame Tagung 2014 der DGfK, der DGPF, der GfGI und des GiN. Hamburg (Germany)
- Novack, T., Maksymiuk, O., Stilla, U. (2013) A concept for guiding the learning of conditional random fields for the classification of urban areas in SAR images In: 33. Wissenschaftlich-Technische Jahrestagung der DGPF. Freiburg im Breisgau (Germany)
- Novack, T., Karam, H. ; Luchiari, A., Claro, M., Pereira Filho, A. J. (2007) Mapeamento automático de padrões de urbanização e cobertura da terra na Região Metropolitana de São Paulo. In: XII Simpósio Brasileiro de Sensoriamento Remoto. XII Simpósio Brasileiro de Sensoriamento Remoto, p. 1001-1008. Florianópolis (Brazil)
- Novack, T., Kux, H. J. R. (2008) Classificação da cobertura do solo urbano inserindo árvores de decisão a rede hierárquica. In: XIV Simpósio Brasileiro de Sensoriamento Remoto. Anais do XIV Simpósio Brasileiro de Sensoriamento Remoto. Natal (Brazil)
- Novack, T., Ribeiro, B. M. G., Kux, H. J. H. (2011) Análise dos dados do satélite WorldView-2 para a discriminação de alvos urbanos semelhantes com base em algoritmos de seleção de atributos. In: XV Simpósio Brasileiro de Sensoriamento Remoto. Anais do XV Simpósio Brasileiro de Sensoriamento Remoto, p. 7815-7821. Curitiba (Brazil)
- Bertani, T. C., Novack, T., Haykawa, E. H., Zani, H. (2010) Detection of saline and non-saline lakes on the Pantanal of Nhecolândia (Brazil) using object-based image analysis. In: Proceedings of the 3rd Geographic Object-based Image Analysis (GEOBIA). Ghent (Belgium)
- Cintra, D. P., Novack, T., Rego, L. F. G., Costa, G. A. O. P., Feitosa, R. Q. (2010) PIMAR Project - Monitoring the atlantic rainforest remnants and the urban growth of the Rio de Janeiro city (Brazil) through remote sensing In: Proceedings of the 3rd Geographic Object-based Image Analysis (GEOBIA). Ghent (Belgium).
- Musci, M., Feitosa, R. Q., Velloso, M. L. F., Novack, T., Costa, G. A. O. P. (2012) Texture characterization in remote sensing imagery using binary coding techniques. In: Proceedings of the 4th Geographic Object-based Image Analysis (GEOBIA). Rio de Janeiro (Brazil)