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ABSTRACT: 

 

In precision agriculture detailed geoinformation on plant and soil properties plays an important role. Laser scanning already has been 

used to describe in-field variations of plant growth in 3D and over time and can serve as valuable complementary topographic data 

set for remote sensing, such as deriving soil properties from hyperspectral sensors. In this study full-waveform laser scanning data 

acquired with a Riegl VZ-400 instrument is used to classify 3D point clouds into post-harvest straw residues and bare soil. A 

workflow for point cloud based classification is presented using radiometric and geometric point features. A radiometric correction is 

performed by using a range-correction function f(r), which is derived from lab experiments with a reference target of known 

reflectance. Thereafter, the corrected signal amplitude and local height features are explored with respect to the target classes. The 

following procedure includes feature calculation, decision tree analysis, point cloud classification and finally result validation using 

detailed classified reference RGB images. The classification tree separates the classes of harvest residues and bare soil with an 

accuracy of 96% by using geometric and radiometric features. The LiDAR-derived harvest residue coverage value of 75% lies in 

accordance with the image-based reference (coverage of 68%). The results indicate the high potential of radiometric features for 

natural surface classification, particularly in combination with geometric features. 

 

 

1. INTRODUCTION 

Mapping and characterization of the three-dimensional nature 

of vegetation is increasingly gaining in importance in many 

fields of applications. LiDAR, also referred as laser scanning 

(LS), has evolved into a state-of-the-art technology for highly 

accurate 3D data acquisition. By now several studies indicate a 

high value for 3D vegetation description, such as in agricultural 

monitoring of trees (Rosell and Sanz, 2012; Seidel et al., 2011), 

field crops (Höfle, 2013; Saeys et al., 2009; Lumme et al., 

2008) or harvest residues (Lenaerts et al., 2012). Harvest 

residues play an important role in agricultural management, for 

instance concerning the calculation of biomass and 

subsequently the need of fertilization as 'humus compensation' 

(Fink, 1996) or for renewable energy production (Pimentel, 

1981). Knowledge of the quantity and the spatial distribution of 

harvest residues are important for the determination of surface 

properties. Hyperspectral (HS) remote sensing is used in 

agriculture, mapping crop characteristics (Jarmer, 2013; 

Thenkabail, 2000), the assessment of crop residues (Daughtry, 

2004) and the assessment of soil properties (Jarmer et al., 2008; 

Barnes and Baker, 2000). The captured mixed signal in case of 

existing harvest residues can be interpreted and considered in 

further analysis. 

 

This paper investigates the mapping and coverage derivation of 

harvest straw residues and bare soil using ground-based full-

waveform LS including geometric and radiometric data. Once 

the individual laser points are classified, the position of the 

harvest residues can be used to evaluate and model biomass 

distribution or can serve as input for HS remote sensing 

analyses in agricultural management. Challenges of using LS 

point clouds directly are the large amount of raw data, the 

requirement of fast and robust algorithms for radiometric 

correction and geoinformation extraction. Radiometric 

information of LS has proven to be a valuable feature for object 

detection in airborne (Höfle et al., 2012; Briese et al., 2008) and 

terrestrial LS (TLS) data (Höfle, 2013). However, to exploit the 

full potential of radiometric correction and information 

extraction, especially in the precision agriculture domain, 

further detailed investigations are required.  

 

In this study the potential of radiometric information of LS for 

3D point cloud classification and the identification of harvest 

residues is explored. This paper presents a radiometric 

correction procedure based on laboratory experiments as well as 

a novel workflow for point cloud classification, using geometric 

and radiometric point cloud features. 

 

2. STUDY AREA AND DATA SETS 

2.1 Study area and TLS data 

The study area is part of an agricultural research test site at the 

Julius Kühn-Institut, Brunswick, Germany. Within the 

investigated field two plots (1 m x 1 m) were marked. Data was 

collected on 31 March 2012 from time-of-flight scanner Riegl 

VZ-400 with full-waveform online echo detection. The laser 

system has a near-infrared laser beam (1550 nm) with a beam 
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divergence of 0.3 mrad and a range accuracy of 5 mm at 100 m 

according to the manufacturer's data sheet. While the data was 

captured, the scanner was installed at a fixed position ca. 3.5 m 

above ground. The horizontal distance to the test plots lies 

between 5.5 m to 9.5 m. To simulate harvest residues, straw was 

applied irregularly over the plots, from 0 g (bare soil) up to 

150 g straw in steps of 10 g (0 g to 100 g) and 25 g (100 g to 

150 g). Each time after adding straw, the study area was 

scanned and imaged with a standard compact digital RGB 

camera. The study area is covered with an average point density 

of 14 points per 0.01 m², totaling 1.9 x 106 points. 

 

Post-processing includes the removal of points outside the 

defined study area and points with large echo widths (Riegl's 

deviation >10; Pfenningbauer and Ulrich, 2010) in order to 

remove points occurring at edges. For subsequent processing, 

the point cloud was exported as ASCII file with XYZ-

coordinates, range [m], recorded signal amplitude [DN]. 

 

2.2 Reference Data 

The validation of the classification is performed with 1) a 

normalized Digital Surface Model (nDSM) based on the Digital 

Terrain Model (DTM) of bare soil, and 2) an independent 

classification done by image analysis of detailed photographs. A 

validation of the workflow and the features derived by the 

classification is achieved by transferring the workflow and 

derived classification rules to a second plot. Comparison 

between the different data sets of training plot is based on the 

calculated residue coverage value and by cell-by-cell 

comparison of the binary classification maps. 

 

The nDSM layer is calculated by subtracting the DTM from the 

DSM. The DSM represents the surface at 150 g straw and the 

DTM 0 g of residues of the area of the test plots. The 

percentage of coverage is determined within cells of 

0.005 m x 0.005 m size. In case of classification by image 

analysis, georeferenced binary images of all levels of straw 

coverage serve as data basis. For each straw layer, the image-

based straw detection is realized using a simple decision tree 

(DT) with one rule node. In this context, two threshold values 

(one for the red- and one for the blue band of the RGB image) 

are used to generate classification results for all images with the 

two classes straw and bare soil. Afterwards, the single 

classification results of different straw levels are accumulated in 

a final map to derive the image-based reference classification 

for the 150 g straw coverage situation. This accumulation is 

necessary since at higher straw levels, earlier added straw is 

partly covered by shade of newly added straw and hence mis-

classified as a result of the low spectral resolution of camera 

data. 

 

3. METHODS 

The workflow consists of a radiometric correction of the 

recorded signal amplitude, the exploration and calculation of 

features, followed by the classification and the validation. The 

main strategy of the classification procedures aims at assessing 

the straw's specific signal amplitude, differing from bare soil 

amplitudes (radiometric criteria). Additionally the vertical 

height range and variation of local neighbouring points are 

assumed to be higher for harvest residues (geometric criteria). 

The developed workflow is summarized in Fig. 1. 

 

 
 

Figure 1. Workflow to map harvest residues using full-

waveform point cloud and raster data. 

 

3.1 Radiometric Correction 

The laser scanner gathers the geometric (XYZ coordinates) and 

radiometric features (e.g. signal amplitude) from all scanned 

surfaces. The recorded amplitude value is affected by the range 

dependence of the echo signal detected by the receiver (Höfle, 

2013; Pfennigbauer and Ulrich, 2010; Kaasalainen et al., 2009). 

The radiometric correction aims at the removal of the range 

effect. For the used scanner, the 1/R2 correspondence from the 

radar equation, which is mostly valid for airborne laser scanning 

(Wagner, 2010; Höfle and Pfeifer, 2007), is given for distances 

greater than 20 m. Close to the scanner, the recorded amplitude 

increases with distance (Höfle, 2013; Pfenningbauer and Ulrich, 

2010). To remove this range effect, a range-correction function 

is determined in a laboratory experiment.  

 

This experiment is accomplished in a long hallway (250 m) and 

comprises a measurement series of a reference target in stepwise 

increasing distances to the scanner. The quadratic target (20 x 

20 cm) is made of Spectralon® with Lambertian scattering 

properties. At the scanner’s operating wavelength of 1550 nm, 

the nominal reflectance of the target is 92.5%. The target is 

mounted on a tripod and its centre is oriented to the scanner at 

same height as the scanner’s optical centre. The measurements 

are performed with increasing distance between the target and 

the scanner from 1.5 m up to 100 m in 1 m-steps, thereafter in 

5 m-steps up to the maximum distance of 250 m. In the next 

step, least-square (LSQ) fitting of polynomial functions from 

degree 1 to 11 are performed to the range-amplitude values. The 

function with the lowest root-mean-square error (RMSE) is 

chosen to derive the correction function 1/f(r). Finally, the real 

world data sets of 0 g and 150 g straw level of the study area 

were corrected using this correction function. 

 

3.2 Feature Calculation 

Agricultural surfaces can be parameterized by several features 

in order to distinguish harvesting residues and soil. Full-

waveform data offers the possibility to describe surfaces by 

using their geometry and reflectance properties (e. g. 

amplitude). The spatial neighbourhood can be defined either in 

2D (a circle projected on a horizontal plane) or in 3D 

(spherical) domain.  

 

For feature calculation the two data sets of plots with bare soil 

(0 g straw level) and maximum amount of straw coverage 

(150 g straw level) are chosen for analysis in order to achieve 

the best distinguishable result between the two target classes. 

Several smaller areas distributed over the plot are selected 

manually as training areas regarding the absolute height value, 

low height differences within a specific neighbourhood and are 
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further refined by visual comparison with the RGB images of 

both data sets. Remaining outliers were manually removed in 

order to reduce classification errors. The training area selection 

was performed without considering the amplitude value. 

 

Exploration 

 

A first exploratory analysis of the corrected signal amplitude 

and height is performed. This exploration of features comprises 

histogram analysis and the features' distribution within the 

plots. The height differences of the surface can be expressed 

using the standard deviation of the z-values. This geometric 

feature assists to distinguish between 'smoother' surfaces such 

as bare soil on the one hand and straw characterized by higher 

height variations in a defined neighbourhood on the other hand. 

The second feature for detecting straw is the signal amplitude, 

where different backscatter characteristics of the target classes 

are expressed in certain separability in amplitude values. To 

distinguish between soil and straw, the histograms of each class 

in the training data are calculated and compared. The 

corresponding amplitude value of the intersection point of both 

distribution curves serves as threshold in the next step (cf. Fig. 

3).  

 

Neighbourhood Analysis 

 

The second step includes the calculation of additional point 

features considering the neighbourhood of a single point. The 

recorded signal amplitude represents the backscattered signal 

strength from the illuminated target. If the target is smaller than 

the footprint, the signal strength is reduced due to the smaller 

footprint area contributing to the backscatter. To overcome this 

high variation inherent in single point measurements, 

aggregated local neighbourhood features are calculated and act 

as input for decision tree analysis.  

 

Outliers in amplitude are tackled by using the amplitude 

density, which is the percentage of neighbours in 3D with 

amplitude values fulfilling a certain threshold (cf. Höfle, 2013). 

The features are calculated within a local neighbourhood, using 

a maximum count of points k within a search radius R and an 

amplitude threshold AT (derived via exploration). The number 

of neighbours k was deduced from the average point density of 

the plot field and set to 50. The search radius was set to 0.02 m 

with respect to the point density and the size of straw parts.  

 

3.3 Classification 

The decision tree (DT) for surface classification has been 

applied widely to remotely sensed data (Pal and Mather, 2003). 

The DT approach has a number of advantages over traditional 

classification methods. It requires no assumptions regarding the 

distribution of input data and also provides an intuitive 

classification structure (Hansen et al., 1996). 

 

Seven different input features serve as input for the DT 

classification (Table 1). The DT method varies the different 

input features and returns the model with best accuracy. To 

check the model, a validation split of 0.7 (70% training data 

and 30% validation data) was chosen. The sampling of the 

training data was conducted by shuffled sampling. The minimal 

size for split was set to 4 and the minimal leaf size to 2. As 

criterion for the tree induction the gain ratio was chosen with 

minimal gain of 0.1 and confidence of 0.25. The gain ratio is a 

variant of information gain. It adjusts the information gain for 

each attribute to allow the breadth and uniformity of the 

attribute values (Quinlan, 1986). The resulting thresholds of the 

tree with highest accuracy and precision are used for feature 

selection and the subsequent classification process. Precision 

stands for the deviation of data values within the model classes 

and accuracy stands for the closeness of model data to reference 

data. The derived rule-base is data set specific and is thus not 

directly transferable to other point clouds. 

 

Input feature set Derived features 

Corrected values of  

radiometric features 1) signal amplitude 

   

Local neighbourhood  

Geometric features 2) height above local minimum 

3) standard deviation of heights 

4) height difference (max. - min. 

height value) 

Radiometric features 5) amplitude density 

6) coefficient of variation of 

amplitude 

7) mean amplitude 

 

Table 1. Seven different features used for DT classification. 

 

The final straw and soil classes are established by merging all 

branches of the decision tree belonging to class of soil or straw. 

 

3.4 Validation 

The accuracy of the classified point cloud is evaluated within 

four steps. First, the workflow is performed for a second plot 

(validation plot) and the resulting performance thresholds are 

compared. The validation plot is located in 2 m distance to the 

scanner and 2 m distance to the training plot. Second, the 

derived thresholds from the training plot are applied to classify 

the validation plot, enabling to assess the transferability of the 

derived rules. Third, a height difference layer (nDSM) was 

calculated by subtracting the DTM (bare soil) from the DSM 

(with max. straw coverage). Heights above the DTM indicate 

straw that has been added to the bare soil. A threshold of height 

above DTM for the nDSM is chosen to assign cells to the 

harvest residue class, whereas cells with no height above the 

DTM are assumed to be part of the bare soil surface. Finally, a 

classified map derived by independent classification of compact 

camera images serves as validation layer.  

 

For cell-by-cell error assessment a binary raster map 

(soil/residue) is derived by rasterization of the classified point 

cloud, taking the most frequent class (of laser points) per pixel. 

The cell size in the rasterization step is set to 0.005 m based on 

the average point distance of the point cloud. This raster map is 

input for a detailed cell-by-cell comparison with the 

corresponding binary raster map generated from the classified 

RGB image data.  

 

Furthermore, the straw coverage per plot is calculated from the 

binary raster map. This value indicates how much soil is 

covered by straw in the spatial unit of the plot (1m2) as seen 

from bird's eye view, which is a relevant value for remote 

sensing applications.  
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4. RESULTS AND DISCUSSION 

4.1 Radiometric Calibration 

The range correction of signal amplitude shows lowest RMSE 

for a polynomial of degree nine (Fig. 2). The maximum 

amplitude is reached at ca. 10 m distance and is decreasing 

constantly with range thereafter. The error bars and RMSE of 

1.5% to all laser point amplitudes indicate the polynomial 

function's high approximation of the lab experiment's 

measurements. This derived correction function is used to 

remove the amplitude-range effect from the data sets, in order to 

be able to relate the corrected amplitudes with distinct 

backscatter characteristics of the different target surface classes. 

 

 
 

Figure 2. Polynomial function (degree 9) of range-amplitude 

dependency assessed by least square fitting to moving median 

values of original amplitude of laboratory experiment (cf. Höfle, 

2013). 

 

4.2 Feature Calculation 

The exploration of the features shows a good separability 

between harvest residues and bare soil. This can be visualised 

by colouring the points by signal amplitude (Fig. 3). 

Furthermore, the histogram of training data's signal amplitude 

and the calculated distribution function indicates certain 

separability of the two classes. The intersection point at 

2963 DN serves as threshold (AT) for the calculation of the 

amplitude density feature. The percentage of neighbours in 3D 

with amplitude values below this threshold is computed for 

each single laser point. This intersection point can also be seen 

in the vertical profile's shape of amplitudes of the entire training 

plot (Fig. 4).  

 

 
 

Figure 3. Density function of corrected amplitude of harvest 

residues (red) and bare soil (blue) of training data and the 

intersection point. 

 
 

Figure 4. Vertical profile of boxplots of the training plot's 

corrected amplitudes (the 1 m² plot contains a sample of 80,132 

points). 

 

4.3 Classification 

The most reliable classification results are achieved by a DT 

which uses the features of mean signal amplitude and standard 

deviation of height (Fig. 5). A high separability of straw and 

soil points with an accuracy of 96% (Table 2) is achieved. 

Within the DT, 46% of the points are classified as straw and 

47% as bare soil regarding the thresholds of mean amplitude of 

3034 DN and 2994 DN, respectively. The remaining points are 

classified based on the standard deviation of height. Our result 

highlights that point features derived in the local 

neighbourhood (e.g. mean amplitude) increase the separability 

of straw and soil compared to using single point signal 

amplitude values (cf. Fig. 6a and 6g). 

 

 
 

Figure 5. Derived classification tree of training data. 

 

DT input features Accuracy  Used features 

Corrected values of    

signal amplitude 85.80% corrected amplitude 

   

Geometric features 86.41% height difference 

Radiometric features 

 

 

94.83% 

 

 

mean amplitude, 

coefficient of variation 

of amplitude 

Radiometric & geometric 

features 

 

96.24% 

 

 

mean amplitude, 

standard deviation of 

height 

 

Table 2. Accuracy of DT classification of training data with 

varying input features and the resulting thresholds. The input 

features are listed in detail in Table 1. 
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The final classification step assigns the class label "harvest 

residues" or "bare soil" to the single laser points based on 

derived DT thresholds. Most assignments are done based on the 

feature of mean amplitude. This is reflected by the relatively 

high accuracy of 95% in DT analysis, using only the 

radiometric features. The usage of height differences as input 

does not increase the accuracy significantly (only 1.4%). The 

classification of the transition area between straw and soil is 

particularly affected by the height feature (Fig. 6 (a) compared 

to (g)). Most of the points can be separated by using the feature 

signal amplitude, which can be seen in the use of mean 

amplitude values as first separation step in DT. The resulting 

threshold of 3034 DN for mean amplitude is comparable to the 

intersection function maximum in the exploration part 

(2964 DN) as well as the threshold of 2946 DN determined by 

DT with corrected signal amplitude.  

 

 
Figure 6: 1-m transect through classified point cloud: a) top 

view of classified points, b) point cloud profile, c) rasterized 

binary map, d) corresponding image reference classification, e) 

RGB image of maximum residues cover, f) nDSM layer 

residues cover and g) coloured point cloud based on single 

corrected amplitude values only. Red: harvest residues, blue: 

bare soil. 

 

4.4 Validation with Reference Data sets  

The validation proceeds on four levels to demonstrate the 

transferability of the workflow. Due to varying spatial 

resolution and data models of different data sets (i.e. RGB 

image classification versus classified point cloud), coverage 

raster maps were computed and compared (Table 3). 

 

First, the workflow and thresholds assessed by using training 

plot data were applied to validation plot data. The calculated 

density distribution and the density function of the validation 

plot's corrected amplitude values differ slightly from the 

training plot. The intersection of straw and soil amplitude 

density curves increases about 1.26% from 2963 DN to 

3001 DN compared to the training plot. This variation could be 

explained by a higher number of points and the lower incidence 

angles due to the shorter distance between scanner and plot. 

Comparing the revealed class thresholds by DT analysis shows 

a similar result in selection of classification features of mean 

amplitude and height. Most of the points are classified by mean 

amplitude, in case of straw 44% and in case of bare soil 46%. 

The height threshold varies and is in accordance to the differing 

distribution of straw at the validation and the training plot field. 

The DT of the training plot uses the standard deviation of height 

(straw > 0.003) for classifying, while DT of the testing plot uses 

the standard deviation of height (straw > 0.014). The DT 

analysis of the validation plot achieves an accuracy of 95%. 

This is reaffirmed with the final calculation of the coverage 

within the validation plot. This is done by classifying by means 

of a) rule-base derived from training data of first plot and by b) 

newly computed rules derived by DT analysis. The 10% lower 

coverage calculated by the rule-base derived from training plot 

shows the limited transferability, regarding varying distribution 

patterns or angular dependency on scanning (Table 3).  

 

Data set Coverage [in %] 

Harvest 

residues 

Bare 

soil 

3D point cloud (ratio of number 

of points per class) 

 

78.59% 21.41% 

2D binary raster maps   

1) Training plot  75.85% 24.15% 

2) Validation plot (own derived 

rules) 

73.34% 

 

26.66% 

 

3) Validation plot field (rules 

from training plot) 

64.30% 

 

35.70% 

 

4) nDSM layer of training plot 

field 

63.69% 

 

36.31% 

 

   

Photo image analysis   

training plot field 67.94% 32.06% 

 

Table 3. Resulting overall coverage values of harvest residues 

and bare soil for the different data sets (1 m² plots). 

 

Due to varying point distribution and lack of coverage in certain 

areas of the TLS data (compare Fig. 6 (a), (c) and (g)), 

comparison of rasterized coverage considers only cells that have 

values in LiDAR-derived case. Around 76% of the training plot 

area is covered with harvest residues as compared to 68% 

calculated by reference RGB image analysis. All data sets show 

a coverage proportion of around 2/3 harvest residues to bare 

soil. A cell-by-cell error assessment of LiDAR-derived classes 

and classes derived by image analysis (Fig. 6 (d)) yields an 

overall accuracy of around 82% and a precision (positive 

predictive value) of 95% of classified straw (Table 4). 

Comparison of the point cloud classification with the nDSM 

layer (Fig. 6 (f)) results in an overall accuracy of 70%. The 10% 

lower coverage value of harvest residues derived from the 

nDSM layer, which assumes that harvest residues have a certain 

height above soil, reflects the improvement of classification 

through additional usage of radiometric features. This is mainly 

due to residues without a distinct height lying relatively flat at 

the soil surface. 

 

 LiDAR-derived vs. 

 nDSM layer image analysis 

Accuracy 70.49% 81.56% 

Precision 63.26% 94.92% 

 

Table 4. Error assessment of cell-by-cell comparison between 

the rasterized maps of harvest residues. 
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5. CONCLUSION 

The study at hand shows the potential of LiDAR data for 

harvest residues detection and coverage mapping if using both 

radiometric information and geometric description. Radiometric 

correction using a range-correction function derived from 

laboratory experiment eliminates distance effects. The 

separability between the two target classes harvest residues and 

bare soil was revealed. The study shows promising results for 

the detection of harvest residues of crop entire fields. Future 

research should concentrate on the effect of different soil 

conditions like dry, wet or mossy on the signal's backscatter 

strength (e.g. signal amplitude). Furthermore, the procedure will 

be applied to entire crop fields with spatially varying harvest 

residues densities. In this context, the optimum point density of 

spatial target unit (e.g. 1m2) for coverage maps should be 

investigated further. With respect to radiometric correction, 

angular dependencies are relevant and have to be analyzed in 

more detail.  
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