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ABSTRACT: 
 
Several recent studies have shown that airborne laser scanning (ALS) of urban areas delivers valuable information for 3D city 
modelling and map updating. Building footprint detection from multi-temporal ALS lacks in comparability because of changing 
ALS flight parameters, flying season, interpolation settings if digital elevation models are used, and the ability of the used building 
detection method to deal with these influences. So far, less attention has been paid to change detection of buildings within a short 
time span (approx. three months), where major problems are the high variability of vegetation over time and to distinguish 
temporary objects from small changes of buildings, which are currently under construction and demolition, respectively. We 
introduce an object-based workflow to investigate how unchanged objects can be defined, which variability in the object appearance 
is allowed to define an object as unchanged, and at which threshold a change can be indicated. The test site is situated in the city of 
Innsbruck (Austria) where ALS data is available from summer and autumn in 2005. In an initial step building footprints are derived 
by an object-based image analysis (OBIA) detection method for each flight independently. The parameters for building detection are 
derived for a training site in order to automatically derive the rules of the classification tree. Then the object features of buildings 
derived from the different flights are compared to each other and separated into the classes unchanged building, new building, 
demolished building, new building part, and demolished building part. The results are verified by a reference, which was created 
manually by visual inspection of the elevation difference image of both epochs. For new buildings and building parts 90% and for 
demolished buildings and building parts 32% were detected correctly. The detection of demolished buildings is strongly influenced 
by the appearance of high vegetation, which is caused by the decreasing heights of trees by comparing summer (leaf-on) and autumn 
(leaf-off) ALS data. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Urban areas are highly dynamic landscapes where changes 
occur in different rates and frequencies. Nowadays airborne 
laser scanning (ALS) data is available for several urban areas in 
Europe. The purpose of acquiring multi-temporal ALS data is 
on the one hand to have the most recent surface representation 
of a certain area and on the other hand to be able to perform 
change detection analysis for monitoring purposes. Change 
detection plays a key role in urban planning i.e. monitoring of 
urban sprawl and its dynamics (e.g. Durieux et al, 2008; 
Maktav et al., 2005) and to detect changes after natural hazards 
such as earthquakes (e.g. Vu et al., 2004; Rehor et al., 2008). 
 
The objective of this paper is to show how changes appear in 
ALS data, caused by either seasonal differences or by urban 
dynamics i.e. construction activities. It is interesting to see how 
these changes are captured in data, which was flown within 
only three months, which is a very short time period for urban 
multi-temporal ALS data sets. The aim is to explore the 

performance of multi-temporal building detection by applying 
the method of Rutzinger et al. (2006). 
 
 

2. RELATED WORK 

Champion et al. (2009) test four different building detection 
approaches (Champion, 2007; Matikainen et al., 2007; Olsen 
and Kudsen, 2005; and Rottensteiner, 2008). The input data 
were infrared orthophotos and digital surface models (DSMs) 
from image matching and for one test site from ALS. A 
comprehensive comparison was undertaken in order to 
investigate the impact of input data types, resolution, scene 
complexity and methods. The authors state that high quality 
DSMs are important for reliable building and change detection. 
However, the ALS data available in this study was first echo 
data, which made it difficult to differentiate buildings from 
vegetation. The detection of changing buildings in ALS DSMs 
was already early investigated by Murakami et al. (1999) by 
subtracting  two DSMs and filtering the difference image in 
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order to remove elevation differences along edges of unchanged 
buildings. A building change detection method using 
exclusively ALS data in an object-based approach was 
presented by Vögtle and Steinle (2004). Vosselman et al. (2004) 
developed a method for updating cadastral maps by detecting 
buildings from ALS data and comparing them to an existing 
building footprint database. Further work on building footprint 
extraction and changed detection such as combining aerial 
images with ALS DTMs or using more recent remote sensing 
data for updating of existing cadastral maps is not reviewed 
here since the work presented focuses on the usage of ALS data 
only. However, for a comprehensive overview of related work 
on building footprint detection methods and building change 
detection the reader is referred to the recently published article 
by Matikainen et al. (2010).  
 
 

3. TEST SITE AND DATA SETS 

3.1 Test site 

The test site covers the major part of the city centre of 
Innsbruck (Austria). It comprises a densely built-up area with 
varying building types (multi-story block buildings, single 
family houses with gardens, large industrial buildings), 
agricultural land, and forested areas. The data sets also contain 
temporary objects such as cars, trains, market booths, etc. 
which appear as changes in the data (Fig. 2). 
 
 
3.2 Data sets 

The ALS data were acquired as pilot surveys for the laser 
scanning project Tyrol, Austria (Anegg, 2007). The two data 
sets overlap the major part of the city of Innsbruck, the city 
centre and parts to the west including the airport (Fig. 1). The 
overlapping area represents the border of two larger ALS 
campaigns in the north (summer scan) and south (autumn scan). 
Both flights were acquired with an Optech ALTM 2050. The 
average point density of both flights is around 4 pts/sqm. The 
test site covers an area of 10 km2 and contains 2441 building 
footprints in the summer data set. 
 
 

 
Fig. 1. Shaded relief map of the last echo DSM of the autumn 

flight showing the test site of Innsbruck (Austria) 
where multi-temporal airborne laser scanning data is 
available 

 
 
3.3 Change detection 

As a manual reference a difference raster (diffDSM) of both 
DSMs was calculated, which visualizes all differences in 

elevation, which might disturb the building change detection 
procedure. Figure 2 shows in green areas, where the elevation 
decreased and in red, where the elevation increased. 
First of all, building edges show increases and decreases, 
indicating here a shift to north west, which can be caused by (i) 
insufficient registration of the data, (ii) difference of scan angle 
in both scans and therefore different amount of echoes on 
building walls, and (iii) different echo distribution and local 
point density which effects the aggregation of points to raster 
cells when calculating the DSM. Further decreases are reasoned 
by parking cars, umbrellas in front of restaurants in the inner 
city, which were removed in the autumn scan (Fig. 2, lower 
arrow), maize fields, which were harvested, and deciduous 
trees, which lost their leafs. While in the summer scan the laser 
beam was reflected on the tree canopy, in the autumn scan the 
laser beam was reflected on the branches or even on the ground, 
which leads to negative heights in the diffDSM. An increase of 
elevation can be found in the city centre where the Christmas 
tree for the Christmas market was already installed (Fig. 2, 
upper arrow). 
 
 

  
Fig. 2. Different aspects on elevation changes in the difference 

digital surface model from the city centre 
 
 

4. METHOD 

The workflow of the proposed building change detection 
comprises two major steps, which are firstly the object-based 
building footprint detection (Sect. 4.1), which is applied for 
each laser scan independently and secondly the change 
detection procedure (Sect. 4.2). 
 
 
4.1 Extraction of building footprints 

In a first step a first-last-echo difference model (FLDM) is 
calculated, by subtracting the last reflection (lowest elevation) 
from the first reflection with the highest elevation in order to 
derive a vegetation mask. Elevation differences of reflections 
within a single laser beam mainly occur at the canopy of high 
vegetation and building edges. Hence, the difference model is 
further enhanced by applying a filter for removing long thin 
structures representing building edges and small areas (Fig. 3). 
The areas covered by the vegetation mask are set to “no data” 
and are not considered any more in the building detection 
process. 
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  (a)           (b) 
Fig. 3. (a) First-last-echo difference model  and (b) the derived 

enhanced vegetation mask  
 
Next, building regions are segmented by inverting the DSM and 
applying a fill sinks procedure (Arge et al., 2001; GRASS 
Development Team, 2010). All high objects are considered as 
sinks and filled up to the minimum elevation in the individual 
region in order to guarantee a hydrologically consistent 
elevation model. This model is subtracted from the original 
DSM and thresholded at a certain minimum height in order to 
remove artefacts, i.e. overestimation of building outlines or the 
influence of low vegetation (Fig. 4). 
 
 

 
Fig. 4. Outline detection of building footprints by fill sinks and 

height constraint 
 
The remaining building segments are enhanced by applying a 
morphological opening, which further smoothes and removes 
remaining overestimation of the building outlines (Fig. 5). 
 
 

 
Fig. 5. Outline enhancement by morphological opening. 
 
The segments are classified into buildings and non-buildings 
using a classification tree (Breiman et al., 1993; Maindonald 
and Braun, 2007) derived from a training area. As training 
segments building footprints and non-building segments are 
selected from the derived segments. For those, several statistical 
features such as first order statistic on elevation, object heights, 
first-last-echo difference, standard deviation of slope and aspect 
derived from the DSM, and geometrical object properties such 
as area and shape indices. Table 1 lists all the input features 
which were calculated to build up the classification tree. 
 
By applying the classification tree (Therneau and Atkinson, 
1997) the sample set is divided into subsets which are tested 
and compared in order to define the optimal splitting rule 
between both classes. In fact, the developed rule base is a box-
classifier in feature space, which has crisp thresholds at each 
node (rule). The features can occur in multiple hierarchies of 

the classification tree. The levels, i.e. the complexity of the 
classification tree, can be regulated by defining a complexity 
parameter, which is also known as pruning. In general, the 
complexity of a classification tree should be kept minimal in 
order to avoid modelling the data itself instead of describing the 
class specific characteristics. 
 
 

Object Feature DSM FLDM Segments
Stdev object height X   
Mean object height X   
Max object height X   
Min object height X   
Mean FLDM  X  
Area   X 
Shape (perimeter/area)  X X 
Shape (circumscribing 
circle) 

 X X 

Stdev slope X   
Stdev curvature X   

 
Table 1. Object features calculated as classification input 
 
 
4.2 Change detection 

The building change detection procedure is based on the 
automatically extracted building footprints and their attributes 
exclusively. The procedure distinguishes the following cases: 
 

- unchanged building or building part 
- new building 
- demolished building 
- new building part 
- demolished building part 
 

The change detection compares spatially related building 
footprints and their attributes derived from each epoch 
individually. In order to be able to detect also gradual changes 
at buildings such as the construction of a new story, not only 
the appearance of another object polygon is checked but also 
the mean difference of the elevation in the segment part. There 
are several methods how to measure detection success of 
building footprint extraction (Rutzinger et al., 2009) In the 
following the change detection results are evaluated by 
calculating the overall accuracy as 
 
 overall accuracy = TP / (TP+FP+FN)  (1) 
 
with true positives (TP), which are segment parts classified as 
change which are also changes in the reference and the false 
positives (FP), which are segment parts classified as change 
where no changes occur in the reference. False negatives (FN) 
are changes which are in the reference but are not detected by 
the method. 
 
 

5. RESULTS 

5.1 Building detection 

The vegetation mask is derived for both input data sets and then 
merged in order to get maximum vegetated area. The building 
segments from both epochs are derived by the fill sinks 
approach (Sect. 4.1) and were further selected by a minimum 
height of 2.5 m and minimum area of 10 sqm. The shape of the 
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building segments is enhanced using morphological opening of 
3 m and 4 m kernel size, respectively. For a training area 
containing 103 buildings two classification trees were derived 
independently. The features automatically selected for 
classification were area, shape index, and first-last-echo 
difference. The complexity of the derived trees is very low. The 
trees consist of one and two splitting nodes, respectively. 
Figure 6 shows a subsection of the classified building footprints 
from the autumn data set. 
 

 
Fig. 6. Classified building footprints from the autumn data set 
 
 
5.2 Change detection 

The comparison of the building footprints from the two epochs 
is done by a simple overlay of the segments. This leads to an 
extreme overestimation of changes since also small differences, 
which occurred from slightly different building outlines in both 
data sets (i.e. due to differing sensor position in each epoch, 
registration and rasterization) and uncertainty in the building 
detection method. 
 
Theses wrongly detected changes are apparent as long and thin 
segment parts, which can be identified by calculating the shape 
index. Furthermore, the mean elevation within a segment part 
must not differ more than 3 m, which ensures that detected 
changes are equal or larger than the approximate floor height of 
a building. The overestimation of changes can be enhanced by 
selecting and relabeling segments parts based on their shape 
index, height difference between both DSMs, and area. 
 
 

  
Fig. 7. Automatically detected locations of changed buildings 

with two zoomed-in examples from the city centre 
 
The final result of the automatic building footprint change 
detection is shown in Figure 7. The overall accuracy of detected 
changes reaches 54%. This comes from a remaining 
overestimation of detected changes at demolished buildings. 
The plot in Figure 8 shows all the detected changes labelled by 
the actual changes derived from the reference. The changes are 
plotted by their area and height difference. It can be seen that 
the new and partly new buildings are detected very well 
reaching an overall accuracy of 90%. The problem arises for 
demolished and partly demolished buildings where the overall 
accuracy drops to 32%. This is mainly caused by trees and tree 
parts wrongly classified as buildings. Further changes not 
relating to buildings occur at the terrain such as road 
construction or come from extensive registration errors, which 
were apparent at the boundary of the test site. 
 
Figure 9 shows the overall accuracy plotted as solid black line 
for areas from 0 to larger than 500 sqm with a bin size of 
50 sqm. The strong influence of changes caused by vegetation 
for segments smaller than 150 sqm is clearly indicated. If the 
vegetation removal could be improved, the overall accuracy for 
the 100 and 150 bin would increase to 100% and 75%, 
respectively as indicated by the dashed grey line. 
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Fig 8. Detected changes labelled by reference and clustered by 

elevation change and area 
 
 

 
Fig. 9. Overall accuracy of detected building changes as a 

function of changed area. The solid line shows the 
actual accuracy distribution, while the dashed line 
shows the theoretical accuracy distribution, if 
vegetation would be classified correctly. 

 
 

6. CONCLUSION AND OUTLOOK 

The presented study shows that urban areas are highly dynamic 
environments where major changes on buildings occur also in 
rather short time intervals (three months). Changes in ALS data 
appear from several sources such as anthropogenic objects, 
temporary objects, vegetation, and changes due to data capture 
conditions and data quality. The assessment of the change 
detection results shows that the appearance and phenological 

changes of high vegetation influence the detection success 
most. If the building detection method tends to misclassify 
vegetation, care has to be taken to the phenological behaviour 
of the vegetation between the data acquisition times. One would 
expect similar good detection results for demolished buildings 
if a winter and spring data set is compared. Misclassification 
due to planting of new trees did not occur in the data set. The 
results show the importance of a reliable vegetation detection 
procedure in order to be able to monitor changes in urban areas. 
A more advanced vegetation detection working in the point 
cloud and making use of full-waveform information might 
improve the results significantly (e.g. Rutzinger et al., 2008). 
Future work should focus on the detection and differentiation of 
building footprints with an area below 100 sqm and height 
changes below 3 m in order to be able to detect changes on 
small buildings and to distinguish them from temporary objects. 
In order to be able to analyse objects in this scale an algorithm 
working in the point cloud directly might be needed. 
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