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Abstract
OpenStreetMap (OSM) represents one of the most well-known examples of a collaborative mapping
project. Major research efforts have so far dealt with data quality analysis but the modality of OSM’s
evolution across space and time has barely been noted. This study aims to analyze spatio-temporal pat-
terns of contributions in OSM by proposing a contribution index (CI) in order to investigate the dyna-
mism of OSM. The CI is based on a per cell analysis of the node quantity, interactivity, semantics, and
attractivity (the ability to attract contributors). Additionally this research explores whether OSM has been
constantly attracting new users and contributions or if OSM has experienced a decline in its ability to
attract continued contributions. Using the Stuttgart region of Germany as a case study the empirical find-
ings of the CI over time confirm that since 2007, OSM has been constantly attracting new users, who
create new features, edit the existing spatial objects, and enrich them with attributes. This rate has been
dramatically growing since 2011. The utilization of a Cellular Automata-Markov (CA-Markov) model
provides evidence that by the end of 2016 and 2020, the rise of CI will spread out over the study area and
only a few cells without OSM features will remain.

1 Introduction

Due to the interest, motivation, and efforts of interested volunteers, OpenStreetMap (OSM)
has become an alternative source of geodata in both online and offline applications (Mondzech
and Sester 2011; Neis et al. 2013). While OSM received only minor attention in the first few
years after its launch it now receives a substantial amount of contributions from across
the world. 20 million nodes were provided by 100,000 users until 2008, rising to over 2.5
billion nodes provided by almost 1.7 million users by August 2014. This revolutionary data-
gathering process continues to rise due to the rapid and wide penetration of smartphones,
GPS-enabled devices, and the general awareness of citizen science projects among the popula-
tion (Georgiadou et al. 2013; Mooney et al. 2013).

The entire mapping process in OSM is structured in a democratic manner in which
anyone can: (1) sign up and join; (2) create/edit/delete spatial objects; (3) access the entire
dataset; and, finally, (4) retrieve the entire dataset history free-of-charge so that every action
can be retraced (Ramm et al. 2010). Additionally, OSM represents a rising network of volun-
teers shaping a community which intends to correct the inaccurate or erroneous contributions
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of others, and thus improve the entire data quality of OSM in a systematic way (Mooney and
Corcoran 2012; Jokar Arsanjani et al. 2015). In doing so, the OSM community is actively
managing feedback from participants to enhance the performance of the OSM database, the
respective image libraries, editing tools, and other software functionalities. To guarantee data
quality, active members of the community closely observe and report destructive and harmful
activities through the wiki pages as well as online discussion lists (Ramm et al. 2010).

The OSM community has been intensively monitoring data contributions in order to help
guide the efforts of all volunteers in the right direction (Goodchild 2007; Corcoran et al. 2013;
Jokar Arsanjani 2015). The immense benefit of such crowdsourced projects like OSM can be
considered from two complementary views.

(1) First, from the end-users’ perspective, the free availability of geodata which are not
restricted through data privacy regulations is essential. Resource intensive cumbersome
data acquisition and/or product ordering processes are substantially reduced which, in
turn, improves overall access to the data. More importantly, traditional geodata are often
not very up-to-date and therefore data uncertainty concerns arise (Pourabdollah et al.
2013). Finally, dealing with cross-national studies, researchers are faced with language
difficulties, varying object definitions, semantic interoperability, internal infrastructure
organization, and different data handling processes, among others.

(2) Second, from a data provider’s perspective, both commercial and non-profit enterprises
have to deal with the costs and time required for data collection and attaching metadata
to spatial entities regardless of whether they are extracted from high-resolution images or
in-field surveying elaborated with local knowledge of objects (Haklay et al. 2010).
However, due to the availability of voluntarily provided geodata the situation has
changed radically for both parties. OSM provides large amounts of simply accessible
geodata at a high level of confidence in its data quality whilst being provided at low
financial and time costs (Haklay 2010; Hagenauer and Helbich 2012; Jokar Arsanjani
et al. 2015). Despite some volunteers’ minor knowledge of mapping and data collection,
the gathered information from them comprises new spatial objects and attributes that
may never have existed in traditional databases, as empirically proven by Haklay et al.
(2010), Neis and Zipf (2012), and Neis et al. (2013), among other studies. The impor-
tance of collecting VGI in developing countries is particularly important. As seen in the
response to Haiti’s earthquake and the Philippines’ Typhoon (Zook et al. 2010; Yates and
Paquette 2011; Roche et al. 2011) timely up-to-date and geographically complete data
coverage is available very quickly.

Although considerable research has been carried out on the topic of OSM data quality
issues (Haklay and Weber 2008; Haklay 2010; Girres and Touya 2010; Helbich et al. 2012;
Barron et al. 2014; Jokar Arsanjani et al. 2013a), less attention (Neis et al. 2013; Corcoran
et al. 2013; Jokar Arsanjani 2015) has been paid to the spatio-temporal evolution of OSM.
This is of great importance because if the degree of evolution in a specific area is high it is
more likely to receive more reliable information. This is because more users are involved in the
mapping process and, therefore, increase the control mechanism in the sense of Linus’ Law
(Haklay et al. 2010; Hardy et al. 2012) which exist in volunteered geographic information
(VGI) data collection. Linus’ Law expects that the more edits contributed by mappers on OSM
features the larger the increase in the data quality. Additionally, it is vital for the existing OSM
community to know in which direction OSM is headed. Is it failing to maintain people’s inter-
est in contributing or is it continuing to attract more contributors and contributions leading to
a richer and more accurate dataset.?
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The evolution of OSM in space and time is highly relevant, as it can provide knowledge
of how OSM might appear in the future. It allows estimates to be made about the future data
quality for certain areas which is of interest to OSM-dependent applications (e.g.
OpenRouteService, OSM-3D, OpenMapSurfer) which this may impact. These estimates can
obscure insights into how OSM, as a dynamic human-based system, functions and where and
when OSM attracts people to contribute and which spatial features attract people’s attention.
A few investigations on monitoring the spatio-temporal evolution of the OSM network have
been carried out. For example, while Neis et al. (2012, 2013) consider the amount of nodes,
ways, and relations to measure the development of OSM in a simplistic descriptive manner,
Corcoran et al. (2013) propose two concepts i.e. exploration and densification for distinguish-
ing between the types of on-going activities in OSM. In contrast to Neis et al. (2012, 2013),
Jokar Arsanjani et al. (2015) project the geometry of contributions into a cellular grid and
apply a cellular automata approach to monitor the spatiotemporal evolutionary patterns of
OSM in a case-study area in Germany. A more practical and effective approach, which consid-
ers other criteria in addition to geometry and the quantity of the contributions to OSM, is
urgently required to allow for better quantitative and qualitative indications of activities in
OSM to be determined.

In the current research, following Jokar Arsanjani et al. (2015), collaborative contribution
to a project such as OSM is considered as a spatio-temporally explicit continuous and dynamic
process. Thus, the OSM contributors are the actors, who are interactively contributing their
information to the community. Based on the identified research gaps, the main objective of this
article is therefore to develop a contribution index (CI) for exploring OSM developments so
that instead of the abovementioned approaches, an index is used to monitor the patterns of
contributions. Additionally, this index is coupled with a CA-Markov approach in order to
predict future OSM states over a representative study area. More precisely, in order to leverage
the understanding of the spatio-temporal evolution of OSM, future states of the CI are moni-
tored to predict upcoming OSM contributions until 2020 in space and time. The following
research questions will be addressed:

• Which parameters besides the quantity of contributions do we need to take into considera-
tion in order to design a CI?

• What does the spatio-temporal evolutionary pattern of the CI in the selected study area
actually look like?

• How well does the CA-Markov model perform in predicting the future forms of OSM
contributions?

• In which areas are more contributions received? Is there any spatial correspondence
between the CI and land cover characteristics?

The remainder of the article is structured as follows. Section 2 introduces the materials,
Section 3 explains the methods used. Next, Section 4 discusses the empirical results and finally,
Section 5 highlights major conclusions and outlines recommendations for future research.

2 Materials

2.1 Study Area and Data

The chosen study area is the metropolitan area of Stuttgart, the capital of the Baden-
Wuerttemberg state of Germany, and its surroundings (see Figure 1). The reasons for choosing
this area are two-fold: firstly, the Stuttgart region has been a dynamic area in receiving a large
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record of contributions according to the OSMatrix (Roick et al. 2011); secondly, this area con-
sists of a variety of land cover types i.e. artificial surfaces, agricultural areas, and forests.

The data used in this investigation are the OSM features extracted from the OSM planet
file in July 2013. The OSM planet file represents every node that has been hitherto contributed
and shared in OSM. It must be noted that these nodes represent the configuring nodes of every
point, polyline, and polygon feature. The extracted dataset contains a variety of tags including
the attributes “osmtimestamp”, “osmversion”, “osmuser”, “osmuid”, and “osmid” of objects.

Figure 1 The geographical extent of the study site and corresponding land cover
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Furthermore, the CORINE land cover map of the study area provided by the European Envi-
ronment Agency serves as a second data set, representing the latest update of land cover types
prepared in 2006 at a 100 m spatial resolution (European Environment Agency 2013). Land
cover features permit us to compute the associations with the CI (e.g. urban areas contain
more points of interest and objects rather than agricultural areas).

3 Methods

As outlined in Figure 2, the workflow consists of two parts. While the first part introduces the
CI, the second part is comprised of the CA-Markov model to predict future OSM states.

Subsequent analysis is based on the premise that the whole collaborative contributing
process in OSM possesses the properties of a spatio-temporal dynamic phenomenon as it
started in time and retains its dynamism across time and space, i.e. it spreads out across space
and over time. This process presumably has emerged since 2004 and ever since has evolved
spatio-temporally. For instance, once an object is created/edited/deleted, one contribution is
made by a user and it is more likely that: (1) he/she comes back and continues his/her contri-
bution and the phenomenon spreads across the network; (2) a new contributor gets involved
and starts completing the contribution of the previous contributor(s) by creating/editing/
deleting the adjacent objects; or finally, (3) the chances of receiving contributions from nearby
cells are higher than from ones farther apart, because the process of contributing is continuous
in time and space. Evidently, contributions are given at different rates in each area, so the rate
of contributions depends on the quantity of existing objects and number of involved users.
This is a function of the resident population apart from global mapping calls for humanitarian
aid as seen in Haiti and Philippines. Since the degree of dynamism of this phenomenon
differs over time and location the collaborative mapping process is considered as a space-
time dependent dynamic phenomenon. This phenomenon can be modeled by means of a
CA-Markov model. For the application of this model, the shared nodes as contributions must
be transferred to a grid representation to obtain a better abstraction of the data. Additionally,
the aggregation to cells reduces the data size considerably. The attributes of cells were
combined and several classes for each variable were defined. Accordingly, the subsequently
introduced CI is defined to have a better translation of contributions in terms of quantity,
given attributes, number of involved users in mapping, and how many times an object has
been edited.

3.1 OSM Data Abstraction Using Cellular Grids

In order to use a CA-Markov approach, the shared contributions must be transferred to a grid
representation to have an appropriate abstraction of the data. Initially, a quantitative analysis
of the amount of contributions is performed to determine: (1) how and where the collabora-
tive contributing has emerged and evolved; (2) the rate at which this phenomenon has dissemi-
nated; and (3) to investigate how land cover types play a role in receiving more contributed
cells. Subsequently, the data are transferred to a grid representation with a spatial resolution of
100 m. This resolution, which is compatible with the CORINE land cover map, is selected to
keep the computational tasks feasible while ensuring that the morphological pattern of fea-
tures are retained. For the aggregation process a location-based join analysis is applied to
transfer the attributes of OSM nodes to the cellular grid. Such representations are prepared for
six timestamps from 2007 until 2012 (indicating the contribution by the end of each year)
with 1-year sequences.
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3.2 The Development of a Contribution Index

While previous investigations only measured the degree of activities in OSM by simply count-
ing the number of nodes, roads, users, relations, and attributes separately (e.g. Neis et al.
2013), this study developed a CI which holistically quantifies the activities in OSM. The CI is
based on the assumption that the amount of contributions per cell i is a function f of some
existing measures such as the total number of given nodes (TNN), the mean number of the
attributes (MNA), the number of contributing users (NCU), and the mean version number of
nodes (MVN). Accordingly, four variables (i.e. “quantity”, “interactivity”, “semantic”, and
“attractivity” (the ability to attract contributors)) are derived to categorize the contributions
into categories. While quantity counts the number of nodes given in each cell, interactivity
averages “osmversion” per cell which determines how many times a node has been edited.
Semantic indicates how well the nodes within each cell are attributed, i.e. how many nodes are
given attributes per individual cell on average. Attractivity is based on the number of users
that have edited the nodes within each cell.

CI _i = ƒ , , ,nodes count osmversion number of attributes number ofi i i oosmusersi( ) (1)

It is assumed that the degree of contributing within a cell is higher if certain conditions are
met such as: (1) contributions are given semantic information i.e. the nodes are given attrib-
utes, so if the mean number of attributes per cell is 100%, every feature possesses at least an
attribute. Cells with values of 0% contain no attributes for the contained features, therefore
contributions, which are not given any attributes to describe them, lack of sufficient semantic
description; (2) high quantity of contributions i.e. the number of nodes per cell identifies how
densely the objects represented; (3) high attractivity per each cell i.e. number of “osmusers”
attracted per cell determines that how many users have been contributing in each cell, so the
more users are involved, the more reliable the contributions within a cell are likely to be; and
(4) likewise, high interactivity within each cell i.e. “osmversion” indicates how many times
each individual node has been edited, so higher “osmversion” numbers show that frequent
activities have taken place in each particular cell.

In order to calculate the CI on the basis of the aforementioned variables, a characteriza-
tion of the map patterns is required. A widely used statistic to detect locations of high and low
values, among others, is the local G*-statistic (Ord and Getis 1995). In accordance to Ord and
Getis (1995), it is referred to a hot/cold spot as cells with high/low values which are sur-
rounded by cells with high/low values, respectively. In addition to hot and cold spots, two
other categories are considered that include cells placed between cold and hot spots and cells
that have received zero contributions in the four following categories:

• A dead cell (DC) is a cell to which no contribution is given; therefore all variables have no
value.

• A barely contributed cell (BCC) is a cell that falls into the category of cold spots, which
means it contains the lowest bands of each variable i.e. minimum number of nodes with
low values of interactivity, semantic, and attractivity.

• A fairly contributed cell (FCC) is a cell that falls neither into a cold nor hot spot category.
This means that it contains a moderate number of nodes (less than 100 nodes) with
average values of interactivity, semantic, and attractivity.

• A highly contributed cell (HCC) is a cell that is highlighted as a hot spot and contains the
highest values for each variable, i.e. above average number of nodes (above 100 nodes)
with high values of interactivity, semantic, and attractivity.
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3.3 The Cellular Automata-Markov Approach

Finally, the cell-based CI is projected to future years through a CA-Markov model represent-
ing a frequently employed predictive modeling technique (e.g. Batty et al. 1999, Jokar
Arsanjani et al. 2011, Spicer et al. 2012). It benefits from a multi-criteria evaluation function
which combines cellular automata (CA) and Markov Chain models (Eastman 2012). While a
Markov chain model quantifies transition probabilities of multiple classes of thematic maps,
the CA model allocates the predicted quantity of fluctuations over the space for a certain
period of time through the probabilistic measures. Since the Markov chain model itself does
not generate spatial outputs, the model must be combined with a spatially explicit approach
(Peterson et al. 2009; Guan et al. 2011). Due to the conceptual simplicity of the CA, it has
been utilized for modeling a variety of dynamic phenomena, including land-use/land-cover
changes (e.g. Mitsova et al. 2011), fire spread (e.g. Stambaugh and Guyette 2008), disease
dissemination (e.g. González et al. 2013), and social changes and dynamics (e.g. Dabbaghian
et al. 2011).

The advantages of both models are integrated into a single and robust modeling tech-
nique called the CA-Markov model by quantifying the probabilities of phenomenon dyna-
mism via the Markov chain model and allocating the estimated changes through CA to
predict the future evolution (Zhou et al. 2012). The CA-Markov model is founded on an
initial distribution of the dynamic phenomenon and a transition matrix, assuming that past
driving forces will also operate in the future (Mondal and Southworth, 2010). Several empiri-
cal studies have confirmed the power of CA-Markov models (Kamusoko et al. 2009; Jokar
Arsanjani et al. 2013b). Both aspects make CA-Markov modeling suitable for simulating the
future evolutions of OSM contributions, assuming no change in the form of intervention so
that the contribution rate and number of involved users will continue to grow at the same
rate as it has to date.

4 Results and Discussions

4.1 Spatio-Temporal Mapping of OSM Contributions

Descriptive mapping permits us to visualize the location and number of nodes over time. As
shown in Figure 3, the early contributions were delivered in 2007 and gradually began to grow
out and spread over the whole area until the end of 2012. Spatially overlaying these maps with
the CORINE land cover data reveals that the early contributions were received mainly in arti-
ficial surfaces (54%). This means that areas with a high number of nodes delineate the artifi-
cial surfaces. Agricultural areas rank second for receiving contributions (35%) followed by
forest and semi natural areas (12%). Hot spots on the contribution maps of 2011 and 2012
roughly delineate the developed areas. From these hot spots residential areas (urban and rural)
and road networks are easily detectable.

Moreover, visual analysis of Figure 3 in combination with land cover overlays reveals that
the density of contributions is also increasing. This causes cells with higher numbers of nodes
to delineate residential areas such as urban and rural areas. Similarly, Crandall et al. (2009)
and Li et al. (2013) remark that spatial patterns of Tweets from Twitter as well as Flickr
photos’ primarily delineate administrative boundaries of the US and major roads. Interestingly
the number of users involved is also increasing. These trends indicate that more users are likely
to become involved in the future (see Table 1). The mean number of attributes identifies how
many nodes are given attributes and they can identify objects. This measure also shows an
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increasing trend of additional attributes related to the contributed objects. The mean OSM
version number shows how many times on average a node has been edited. As noted by
Mooney and Corcoran (2014), a higher number of osmversion describes that the object has
been modified more than once and therefore the uncertainty on the location and attribute of
the object decreases.

Using univariate regression, Figure 4 relates selected OSM characteristics (e.g. the number
of nodes) to the yearly timestamps. The coefficients of determination (R2s) show a fairly good
fit, in particular the variables “number of contributing users” as well as “number of contrib-
uted cells” achieve R2s of 93 and 95%, respectively. In combination with Table 1 and Figure 4,
the following conclusions can be drawn:

• Number of nodes: Although there were few nodes until 2008, the number has been con-
stantly increasing. The regression depicts a sharply increasing rate of receiving contribu-
tions and its trend has been exponentially increasing from 2010 onwards.

• Number of contributed cells: Supported by the significant regression parameters, the cellu-
lar abstraction of contributions also reveals that the rate of receiving contributions in both
forms – nodes and cells – has been increasing.

• Analysis of attributes (mean and standard deviation) also proves that over time, objects
receive more attributes than before. Although this dropped sharply in 2011, thereafter it
started to increase. This means that the contributions in 2011 had a reduced number of
attributes relative to the other years and this could be due to a new wave of users that did
not add attributes to their contributions.

Figure 3 Spatio-temporal pattern of OSM contributions from 2007–2012
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Figure 4 Regression results of selected temporal OSM trends
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• Version of contributions: the mean version of contributions increased from 1 (only edited
by one user) in 2007 to almost 2 in 2012. This means that on average the objects were
edited either by two users or within two editing sessions by a single user.

• Figure 4 (bottom) also displays an increasing rate of users involved in the mapping. The
relatively high R2 of approximately 95% demonstrates that despite a slow rate of gaining
users the number of involved users is constantly rising indicating that OSM will continue
to grow for the foreseeable future. Furthermore, along with the increase in number of
users, the rate of nodes per person has been constantly increasing. Over time, number of
nodes, number of users and their share in mapping has been increasing, i.e. the users are
mapping more than before. This might be interpreted as showing that the more users map,
the more skilled they become; however, this assumption must be practically tested and is
beyond the scope of this article.

• A close observation of the contributing users between 2010 and 2012 shows that those 884
users from 2011 continued their contributions along with the 284 new users in 2012. Simi-
larly, the 622 users of 2010 continued their contributions along with the 262 new users in
2011.

To sum up, the statistical analysis indicates a promising outlook in terms of OSM receiving
further contributions. In other words, OSM is becoming more popular and is very likely to
continue its success into the future.

4.2 Contribution Index Analysis

In order to translate each category of the CI into the four indicators (i.e. quantity, interactivity,
semantic, and attractivity), the fluctuations of each variable per each CI category is calculated
through a zonal statistic. Table 2 depicts the variations for each variable per CI category. The
mentioned indicators and thresholds can be used as a rough explanation for calculation of CI
for other areas.

The resulting CI maps are shown in Figure 5 displaying that the majority of cells were
either dead or barely contributed cells. Since 2009, fairly and highly contributed cells appeared
and then began to spread out over the study area. A major change to the cells in the study area
is evident from 2010. Between 2011 and 2012, a large number of dead cells were converted to
fairly and highly contributed cells so that only a small number of dead cells remain. This could
possibly be the aftermath of mapping party calls that were sent out in 2011 and 2012 (see

Table 2 Quantification of OSM contributions into four indicators

Variables Fluctuations

Quantity
(Number of
contribution)

Interactivity
(Average
osmversion)

Semantic
(Mean number
of attributes)

Attractivity
(Number
of users)

CI Categories Dead Cells – – – –
Barely Contributed 1–10 1–5 0.1–0.5 1–5
Fairly Contributed 10–100 5–15 0.5–0.8 5–10
Highly Contributed >100 >15 0.8–1 >10
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http://wiki.openstreetmap.org/wiki/Stuttgart/Stammtisch#). Likewise, these findings are sup-
ported by Figure 6, which indicates that the number of dead cells has been dramatically
decreasing in favor of other categories, whilst fairly and highly contributed cells have achieved
higher proportions since 2011.

4.3 CA-Markov: Implementation, Validation and Prediction

In accordance with Figure 2, to predict future CI patterns the CA-Markov model is set up. To
determine the most appropriate transition rules, neighborhood definition, and kernel size as
well as to evaluate the model’s performance, the model is applied using the past data for the
years 2010, 2011, and 2012 in an iterative manner until the associated transition rules resulted
in highly correlated outputs compared to the actual reality represented through the latest
available timestamp. The CI maps of 2010 and 2011 are imported into the CA-Markov model
in order to simulate one timestamp after that, 2012. The actual CI map of 2012 is used to
evaluate the performance of the CA-Markov model using the Kappa statistic. While several
modeling parameters were tested, the most optimal match was achieved at an iteration number
of 42 using a 3 × 3 kernel size and a von Neumann neighborhood definition which yielded an
overall 68.3% Kappa index of agreement. This indicates a substantial level of agreement
between the simulated map and actual map according to Landis and Koch (1997). Figure 7
displays the resultant predicted map of 2012 as well as the actual map of 2012 for a better
visual comparison.

Figure 5 Patterns of CI from 2007 to 2012
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Figure 6 Development trend of CI over time in terms of number of cells in each CI category

Figure 7 The actual (left) and the predicted map (right) of the CI for the year 2012 by CA-Markov
model
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Finally, the characteristics of the best calibrated model in terms of kernel size, neighbor-
hood function, and number of iterations are employed to simulate the upcoming OSM con-
tributions for the years 2016 and 2020. Figure 8 illustrates the spatial pattern of the
predicted CI maps. The predicted maps of CI in 2016 and 2020 disclose that the fairly and
highly contributed classes with 35% of areal coverage will distinctly take over the dead
cells and barely contributed cells with 75% and 90% coverage, respectively, which cover
artificial surfaces as well as forest and agricultural areas. The remaining barely contributed
areas will cover partially the forest areas on the south-west part of the study area.
This could be either because this land use type is not interesting enough to receive enough
contribution or there are not many objects in these cells requiring mapping. Moreover,
since OSM nodes are taken as footprints of contributions, the edges of farming lands (i.e.
features represented as polygons) are considered. The areas covered by polygons are not
considered.

It should be mentioned that the resultant prediction patterns are based on the temporal
growth of OSM and no potential driving factor is considered. Considering additional factors
will most likely result in both different outputs and prediction patterns. Such a prediction
approach permits researchers to gain an overall impression of the possible future patterns of
OSM dissemination. The patterns of predicted maps show a converged form which is due to
essence of CA-Markov model as noted by Eastman (2012).

Figure 8 Predicted maps of CI for 2016 (left) and 2020 (right)
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5 Conclusions

Multiple objectives were considered in this research: (1) to evaluate the trend of collaborative con-
tributions to the OSM project over time and space on the basis of a grid representation within a
sample study area; (2) to develop a CI for indicating several aspects of contributions to OSM such
as quantity, attractivity (how many users are active in a cell), semantic, and interactivity; and (3)
to predict the future status of contributions based on the CI in order to gain some insight regard-
ing which direction the OSM project is heading in the future. The greater urban area of Stuttgart,
Germany, which contains both urban and rural areas, was selected as a case-study. In order to
develop a CI, in addition to number of nodes per cell, other variables such as average
“osmversion”, average number of users and number of attributes within each cell were consid-
ered. The combination of these four variables as well as applying G*statistics has allowed us to
define four different categories of CI. These four categories are named as follows: (1) dead cells in
which no nodes exist; (2) barely contributed cells in which the number of nodes is relatively low
(2–10 nodes) and the contributions have been edited a few times and shared by a few users with
minimum attributes; (3) fairly contributed cells are those which contain up to 100 nodes contrib-
uted by a number of users and edited a number of times; while (4) highly contributed cells are
those which contain the most numbers of nodes (above 100 nodes) and are edited frequently
amongst a high number of users.

The projection of CI in a spatio-temporal framework allows us to study the past contribu-
tion trends and also to simulate the future OSM contribution patterns of the CI through a
CA-Markov model. The results reveal that the rate at which OSM is receiving contributions
from users has been constantly increasing and is continuing to grow. Furthermore, the number
of users and the number of given attributes have also been growing. This includes an increase
in the number of contributions. The CI maps for historic timestamps also confirm our claim
that these cells are being more actively contributed to. The simulated maps of 2016 and 2020
in addition to the qualitative measures of the CI indicate that a considerable amount of cells
(up to 90%) will turn to fairly- and highly-contributed by these years. This could provide us
with better data quality measures by minimizing the “long tail” effect. In other words, contri-
butions will be edited by a larger number of OSM users and will subsequently benefit from the
strength of the collaborative mapping efforts of the OSM community.

Currently there is a lack of empirical studies which investigate the characteristics of future
contributions to OSM. In this regard the findings of our study certainly enhance the literature
on OSM in a number of ways. Firstly, as shown in the results section, increasing numbers of
people have been drawn gradually to OSM. Within the first three years of the launch of OSM
very few contributions were provided. However, since then, an exponential rate of contribu-
tions has been received. Secondly, a spatial and temporal dependency between the contribu-
tions’ characteristics (e.g. object type, quantity, number of involved users, version number) and
physical characteristics exist. This has been demonstrated by considering the CORINE land
cover map. In general, artificial surfaces are mapped earlier and in greater frequency than agri-
cultural areas and forest/semi-natural areas. There are a number of reasons for this including:
(1) the objects in such land-types are not always evenly distributed across regions; (2) fewer
people are interactively involved with these land types; (3) these land types change very slowly
over a short period of time; and (4) many contributors might not know very much about these
objects as they are not public places and often only the routes through them are mapped by
users. The findings and results of the 2016 and 2020 simulation maps reveal that more users
will contribute by creating/editing more objects containing an increasing number of attributes.
It has been shown that these objects will then be revised by more users resulting in very few
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cells remaining unmapped or barely contributed. A valuable research finding from this work
for OSM communities and end-users is that in the next few years there will be many more
contributions to OSM. Many more users will become involved and their contributions will
have more attributes which will be revised and edited by a greater number of users.

Although our empirical findings are extracted from a specific case study, this research has
demonstrated that the characteristics of contributions are related to socio-economic and physi-
cal factors. It is of great research importance to investigate their relationship to how OSM is
disseminated. Other issues, including how bulk imports of official data integrate with OSM
data will allow for the development of a more extensive contribution index as part of our
future work. It must be noted that the individuals, as mappers, have substantial influence over
most OSM contributions. As OSM and similar projects are growing and being disseminated
remarkably quickly, further studies on understanding the behavior of these individuals in col-
laborative projects are required. These studies will need to investigate technological develop-
ments which make these projects more attractive and user-friendly. Therefore, as individuals
are the main actors in such phenomenon, individual-based modeling techniques such
as agent-based modeling might be an alternative technique to simulate user contributions.
Furthermore, considering contributions based on which object they represent, e.g. buildings,
roads, etc. may be beneficial for studying the spatiotemporal patterns of OSM contributions in
a more effective manner.
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