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Georeferenced user-generated datasets like those extracted from Twitter are 

increasingly gaining the interest of spatial analysts. Such datasets oftentimes 

reflect a wide array of real-world phenomena. However, each of these 

phenomena takes place at a certain spatial scale. Therefore, user-generated 

datasets are of multi-scale nature. Such datasets cannot be properly dealt with 

using the most common analysis methods, because these are typically designed 

for single-scale datasets where all observations are expected to reflect one single 

phenomenon (e.g., crime incidents). In this paper, we focus on the popular local 

G statistics. We propose a modified scale-sensitive version of a local G statistic. 

Furthermore, our approach comprises an alternative neighborhood definition that 

is enables to extract certain scales of interest. We compared our method with the 

original one on a real-world Twitter dataset. Our experiments show that our 

approach is able to better detect spatial autocorrelation at specific scales, as 

opposed to the original method. Based on the findings of our research, we 

identified a number of scale-related issues that our approach is able to overcome. 

Thus, we demonstrate the multi-scale suitability of the proposed solution. 

Keywords: Scale, Spatial Autocorrelation, User-Generated Data, Social Media, 

Twitter 

1. Introduction 

Spatial patterns of geographic phenomena can be explored using indicators of spatial 

autocorrelation. Such indicators express the degree of dependence among different 

observations of some spatial variable (Getis 2010). In more general terms, spatial 

autocorrelation can be described as the correlation between a matrix of spatial relations 

(usually referred to as “spatial weights matrix”) and an attribute value matrix. 

Corresponding indices are often designed as test statistics. In such circumstances, their 

goal is to find unusually high degrees of spatial dependence by testing against the null 

hypothesis of spatial independence (Getis 2010). Typical fields where this kind of 

statistic is particularly helpful are human geography, epidemiology or criminology. In 

such fields, spatial autocorrelation statistics can, for instance, be used for finding areas 

of high economic prosperity, regions of elevated infectivity or crime hot spots. 
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One recurring problem with spatial autocorrelation statistics is their sensitivity 

to spatial scale effects. Most geographic phenomena operate on a specific scale range. 

This typically includes both an upper and a lower distance bound. Some processes occur 

globally, while others are limited to small regions (Dungan et al. 2002). Therefore, 

geographic data acquisition requires adjusting the measuring scale to the phenomenon 

of interest. This is achievable with little effort in controlled experiments that rely on 

automated measuring devices. Appropriate geographic deployment of such devices 

leads to a correctly scaled dataset. However, adjusting the measurement scale becomes 

more difficult (or even impossible) when employing uncontrolled data acquisition 

methods, for instance when observing social activities through georeferenced human 

reports in social media feeds like Twitter. Such uncontrolled data acquisition does not 

allow for a priori scale adjusting and thus causes a potential misfit of the measuring 

scale. In addition, user-generated data often represents more than one phenomenon. 

Observations originating from such data sources reflect a wide array of underlying 

phenomena. Moreover, single contributors reporting about these phenomena typically 

do not interact directly. Thus, their contributions appear in a geometrically 

superimposed manner. A similar effect can be observed in census data, where processes 

operating at different scales are interacting crosswise and are aggregated to the 

respective datasets (Manley et al. 2006). The analysis of user-generated data in general 

is of ever increasing interest. Recently, social media in particular has been leveraged in 

diverse fields such as human mobility analysis (e.g., Hawelka et al. 2014), event 

detection (e.g., Crooks et al. 2013) or sentiment analysis (e.g., Mitchell et al. 2013). 

However, most of the available spatial autocorrelation statistics have been 

developed in the context of controlled data acquisition processes. They assume some 

spatial variable to represent only one phenomenon, measured at a best fitting scale. In 

such case, it is possible to adopt a region-oriented point of view by asking the question 

“What region of a dataset is out of the ordinary?” Here, one just has to properly model 

the size and shape of the focal neighborhoods. However, multi-topic and thus multi-

scale datasets like those extracted from social media are of heterogeneous nature. Every 

sub-region can contain observations at small scales being situated next to others at 

larger scales. These observations appear to be crosswise and overlapping. In fact, one 

region cannot be regarded as one coherent spatial unit in such cases. The question here 

changes to “Which observation at a certain scale in what region of a dataset is out of 

the ordinary?” Thus, the focus changes from being purely region-oriented towards a 

phenomenon-oriented viewpoint. The question is how to separate the extraordinary 

from the ordinary without drawing wrong conclusions from such heterogeneous mixed-

scale regions. 

Existing spatial autocorrelation approaches apply various strategies for coping 

with scale issues. One of these is to vary the spatial weights matrix in size, shape or 

topological configuration. A broad range of different approaches was developed over 

the last decades. Getis & Aldstadt (2004) figured out eleven different general schemes, 

without claiming completeness. A well-known scale-related issue that is related to 

neighborhood definition is that of topological invariance. Different topological 

configurations might comprise the same spatial weights matrix when being modelled by 
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simple binary contiguity. This effect even appears across different scales (Dacey 1965). 

One can avoid this kind of problem by recognizing topology in the neighborhood 

definition via applying an appropriate weighting scheme (Cliff & Ord 1969). Another 

way of dealing with scale is to use local statistics instead of global measures. These can 

account for non-stationary spatial processes and exogenous factors causing 

heterogeneity (such as topography). Thus, they can model local-scale characteristics 

more realistically (Fotheringham 2009). 

In this paper, we propose a modified version of a local G statistic, which we call 

GS statistic. The “S” in the name reflects our emphasis on scale. Our version of the 

local G statistic is able to deal with multi-scale datasets. Spatial autocorrelation can be 

assessed by following a two-step approach: First, the scale range of interest is extracted 

by relying on a new neighborhood definition. Our neighborhood definition differs from 

common approaches in that all tuples of observations within the local focus are 

examined with respect to their scale. Furthermore, the principle of the statistic itself is 

modified towards operating at a certain scale, instead of mixing up different ones. This 

allows for unraveling the autocorrelation structure of all locally available scales 

separately. We further develop equations for assessing the variance and the expectation 

and we present a standardized version of our statistic. Finally, we test our approach by 

comparing it to the original method. We apply both the original and our method to a 

Twitter dataset consisting of a snapshot of an urban setting from the city of San 

Francisco and we discuss some scale-related issues. 

We start the remainder of this article by giving background information on the 

ambiguous term of geographic scale in Section 2. Afterwards, in Section 3, we present a 

literature review on the field of spatial autocorrelation statistics, with special focus on 

scale. In Section 4, we define our modified statistic, which is being tested in Section 5. 

We end our paper with some concluding remarks in Section 6. 

2. Background: some notes on geographic scale 

The concept of geographic scale is central to this paper. Spatial phenomena are 

supposed to operate at a certain scale. Therefore, accounting for this property is crucial 

for obtaining realistic results from spatial autocorrelation analysis. However, scale is an 

ambiguous term. While the concept is of interest to several disciplines, each adopted a 

different meaning (see Gibson et al. 2000 for a multi-disciplinary overview). Ecologists 

use the term for describing levels in the hierarchical system of biological taxonomy or 

in the hierarchy of a food chain (Allen & Hoekstra 1992). Sociologists classify their 

research according to the scale of human relationships, i.e., into micro-, meso-, macro- 

and global-sociology (Smelser 1995). Scholars from political sciences or from urban 

planning use the term “scale” less from a quantitative than a conceptual point of view. 

In analogy to political jurisdictions, they classify their research into studies at the local, 

regional, national or international scale (Turner et al. 1989, Gibson et al. 2000). 

Different notions of scale are also common even within the single discipline of 

Geography. Cartographic scale, for instance, refers to a ratio between model and reality. 

It is a proxy for the degree of spatial reduction during the process of reality abstraction 
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(Turner et al. 1989). In contrast, phenomenon scale (or operational scale) describes the 

areal magnitude that a phenomenon covers in the real world (Lam & Quattrochi 1992, 

Montello 2001). Its counterpart is analysis scale (or methodological scale), which 

denotes the unit size used for aggregation (Lam & Quattrochi 1992, Montello 2001). 

The concurrent term “resolution” basically describes the same concept in remote 

sensing, where it is used to specify the width of equally sized grid cells. Another more 

general description of the concept of resolution/analysis scale has been given by Waldo 

Tobler. He describes this concept as the representation of the smallest distinguishable 

parts (Tobler 1988). 

Throughout the remainder of this paper, we use the term “scale” to refer either to 

phenomenon or analysis scale. Both are interrelated. If one is analyzing a spatial 

phenomenon at a wrongly adjusted analysis scale, the analyst misses out the essential 

information (i.e., spatial variation) (Goodchild 2001). Thus, it is crucial to harmonize 

the phenomenon scale (or the “real-world” scale) and the analysis scale. 

3. Literature review 

A broad range of indicators for measuring spatial autocorrelation has been developed 

over the last decades. Many of them are of global nature and describe the average 

spatial autocorrelation across a given region. Popular examples include the 

autocovariance-based Moran’s I (Moran 1950), the semivariance-based Geary’s C 

(Geary 1954) or Tango’s C (Tango 1995) and Rogerson’s R (Rogerson 1998), the two 

latter being both related to the 𝜒²-goodness-of-fit test. A statistic that moreover allows 

statements about the characteristics of the involved observations is Getis & Ord’s G 

(Getis & Ord 1992, Getis & Ord 1995). Zhang & Lin (2006) modified G for 

overcoming the problem whereby high and low values might cancel each other out. 

These authors also presented an alternative approach to G by decomposing Moran’s I 

into three separate statistics (Zhang & Lin 2007). These are respectively capable of 

finding either high-value, medium-value or low-value accumulation. 

The indicators presented above are designed for dealing with numerical attribute 

values. However, more recently, some research has also taken place around indicating 

spatial autocorrelation in the context of categorical data. This kind of spatial association 

is indeed beyond the focus of this paper. However, some recent examples can be found 

in Boots (2003), Ruiz et al. (2010) and Leibovici et al. (2014). Most of these indicators 

are based on entropy measures. 

Approaches to the treatment of scale and related issues can be distinguished into 

two general but complementary strategies: The use of local statistics and the design of 

spatial weight matrices. Local statistics are better suited for taking into account the local 

context than global ones (Fotheringham 2009). These measures assess the 

autocorrelation of a given local sub-region instead of subsuming the whole spatial 

autocorrelation structure by just one number. This category of statistics is relatively 

recent and is often designed to complement some corresponding and already available 

global measure. Examples of such statistic include Gi and Gi
* 

(Getis & Ord 1992), LISA 

statistics (the local versions of Moran’s I and Geary’s C) (Anselin 1995), U (Tango 
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1995) or local R (Rogerson 1998). The general principle of these statistics is to compare 

a local neighborhood to some overall dataset. However, this is problematic when 

considering the potential heterogeneity of spatial regions with respect to underlying 

covariates. A recent approach that has been presented by Ord & Getis (2001) tries to 

overcome this issue by comparing contiguous regions instead. 

The compilation of spatial weights matrices is another strategy for dealing with 

scale issues. Aldstadt & Getis (2004) revealed at least eleven different schemes for this 

purpose. Getis (2009) categorized them into three categories according to their 

respective nature. Following this, spatial weight matrices can be constructed by 

following a theoretical, empirical or topological point of view. Theoretical approaches 

are based on some underlying distance theory such as Zipf’s law (Zipf 1949). They 

assume the spatial weights to be exogenous to any system. The most frequently applied 

approach of this kind is using some sort of inverse distance. Scale is typically modelled 

by inducing an upper distance bound. The opposite of the theoretical approach to 

constructing weight matrices is constructing them in an empirical manner. Here, the 

analyst tries to estimate the neighborhood structure by extracting it from some reference 

region of a given dataset. However, this reference region is also the limiting factor for 

the explanatory power of such matrices. A third approach to matrix construction is 

trying to depict the topology as realistically as possible. These approaches are motivated 

by the well-known issue of topological invariance (Dacey 1965), which leads to similar 

matrices across different topological settings when using binary contiguity indicators. 

An issue related to scale here is that differently sized spatial units are nevertheless 

treated similarly. Cliff & Ord (1969) suggested using suitable weighting schemes to 

overcome this problem. Examples of recent approaches for matrix construction include 

that of Getis & Aldstadt (2004) (utilization of a local statistic for assessing a proper 

matrix) or LeSage (2003) (Gaussian distance). Two interesting approaches with specific 

focus on scale are presented by Aldstadt & Getis (2006) and Rogerson & Kedron 

(2012). Both of them are based on successive expansions of the neighborhood size until 

a maximum value of a given local statistic (e.g., local Moran’s I) is reached. Another 

approach for finding a suitable scale is leveraging the range of local semivariograms 

(Lloyd 2011). However, this is more common with geostatistical scenarios such as 

kriging. 

In summary, research on indicators for measuring spatial autocorrelation has a 

long-standing tradition. Indicators can be found for different types of data and originate 

from different domains. The same is true for scale problems, which have indeed always 

been important to geographic problems. However, dealing with scale remains a 

challenging and yet unsolved task (Getis 2006). It is interesting to note that even today, 

after decades of research, modeling scale remains one of the biggest challenges in 

spatial analysis (Fotheringham 2009). With the rise of mixed-scale datasets like those 

extracted from social media, this issue is becoming even more challenging. None of the 

available approaches focuses on this specific problem. Thus, this is the motivation for 

our research. 
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4. A scale-sensitive local G statistic 

Before defining our scale-sensitive local G statistic, we first introduce the original 

method (Getis & Ord 1992, Ord & Getis 1995). This statistic aims to assess not only 

spatial autocorrelation but also the character of the observations that are involved. More 

specifically, it shows whether any local accumulation primarily consists of high, 

medium or low attribute values. Two slightly different versions of the local G statistics 

are available. One of them (called Gi
*
) includes the current observation under 

investigation. Its counterpart (called Gi) neglects the observation being examined and 

only accounts for its neighbors. Equations 1 and 2 define both measures. 

𝐺𝑖
∗ =  

∑ 𝜔𝑖𝑗  ∙   𝑥𝑗𝑗

∑ 𝑥𝑗𝑗
 (1) 

𝐺𝑖 =  
∑ 𝜔𝑖𝑗  ∙   𝑥𝑗𝑗≠𝑖

∑ 𝑥𝑗𝑗
 (2) 

The variable x represents the attribute values. The matrix ω denotes a binary spatial 

weights matrix, where values of one indicate adjacency to observation i. However, non-

binary matrices are also allowed. The index j iterates over the adjacent observations. 

4.1 Issues regarding scale 

The problem that is addressed in this paper is the issue of inadequate scale treatment 

when it comes to multi-scale datasets. One issue that arises is related to the different 

scales involved in the nominator and denominator of the local G statistic. In equations 

(1) and (2), the nominators represent the sum of the accumulated attribute values 

contained in a given local neighborhood. That neighborhood may be defined by any 

given distance threshold. This sum is being compared against the overall sum of the 

attribute’s values throughout the entire dataset (represented by the denominators). Now, 

if one changes the distance threshold used to define the neighborhood, it will clearly 

result in a scale change in the nominators. However, there is no effect on the values they 

are being compared to, for the denominators remain unchanged. This fact causes a 

serious issue when it comes to multi-scale datasets, whereby phenomena occurring at 

different scales are compared with each other. 

While the nominator represents spatial relations within a given distance range, 

the denominator comprises spatial relations across all scales that are present in the 

dataset. This is indeed not an issue with single-scale datasets, since only one scale is of 

interest under such circumstances. However, it becomes a problem when analyzing 

multi-scale datasets. In such cases, different scales are being mixed up, although they 

might represent different phenomena. Another problem is the way in which 

neighborhoods are typically defined. As mentioned in Section 3, many different 

approaches exist. However, they typically model the neighborhood as a fixed-size area 

around some observation. Furthermore, they assume to include single-scale 

observations. This is inappropriate for multi-scale datasets, since phenomena at 

different scales might be situated in close proximity to each other and overlap. Thus, 
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prior to redefining the original statistic, we need to introduce an alternative 

neighborhood definition. 

4.2 Scale-adjusted neighborhoods 

The first step of our proposed solution for overcoming the problems with multi-scale 

datasets is the use of scale-adjusted neighborhoods. Common approaches for 

neighborhood definition specify their shape, size or topological ordering (Getis 2009). 

The focal scale is usually modelled by choosing a sufficient neighborhood size. All 

instances being situated closer than a defined distance threshold are taken into account. 

The threshold's value is set based on the phenomenon being studied. However, in case 

of multi-scale datasets, one is implicitly dealing with observations at scales that are 

smaller (or even larger) than the intended one. Therefore, we suggest using an upper 

and a lower distance threshold. Moreover, these thresholds are then used for evaluating 

the pairwise distances between all features in the vicinity of the examined observation. 

If the distance between two of these features exceeds the upper bound or is shorter than 

the lower one, their relationship is neglected and excluded from the neighborhood. 

Figure 1 illustrates this approach. 

 

Figure 1. Schematic sketch of the proposed scale-adjusted neighbourhoods. 

d = distance; 𝑗, 𝑘 ∈ ℕ = indices of observations; ⊕ = “exclusive-or”. 

4.3 Development of the proposed GS statistic 

In this sub-section, we define our approach to defining a local scale-sensitive high/low 

value autocorrelation statistic. This measure is derived by adapting the local G statistic, 

as stated above. We call our statistic “GS statistic”, where the added “S” reflects the 

emphasis on scale. It should be noted that our definition given below focuses on 
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pairwise relationships among observations. This kind of analysis is of broad interest for 

the analysis of data extracted from social media, where analysts are often interested in 

collective processes that occur within some geographic region. Thus, one might want to 

consider relationships among observations instead of focusing on single occurrences. 

Our tests, which are presented in Section 5, deal with one such example (where 

semantic similarities are used to establish relationships). However, it would also be of 

interest to generalize our basic principles to other geometric configurations. Since this is 

beyond the scope of this paper, we leave that open to future research. 

It is necessary to introduce some preliminary definitions, which are presented in 

Table 1. These are used throughout the remainder of this paper. We define them at this 

early stage for the sake of readability of our equations. In addition, please note that we 

are using reduced designator notations (i.e., 𝐺𝑆𝑖
∗ instead of 𝐺𝑆𝑖

∗
𝑑𝑚𝑖𝑛

𝑑𝑚𝑎𝑥  and 𝑓𝑗𝑘 instead of 

𝑓(𝑥𝑗 , 𝑥𝑘)) for notational convenience. 

Table 1. Preliminary variable definitions 

𝑛 

𝜙𝑗𝑘 

𝜔𝑗𝑘 

Total number of point features 

Binary variable, indicating scale fit (1) or misfit (0) 

Spatial weights, indicating adjacency of k to j 

𝑓(𝑥𝑗 , 𝑥𝑘) ≙ 𝑓𝑗𝑘 ∶= 𝑓 ∶ 𝐷 × 𝐷 → ℝ 
A function that maps two input attributes associated with 

points j and k to a real-valued variable 

Γ = ∑ ∑ 𝜙𝑗𝑘𝑓(𝑥𝑗 , 𝑥𝑘)

𝑗−1

𝑘≠𝑗

𝑛

𝑗

 
The attribute value sum of all scale-fitting relationships 

shared by points j and k 

Φ = ∑ ∑ 𝜙𝑗𝑘

𝑗−1

𝑘≠𝑗

𝑛

𝑗

 The total number of relationships fitting the analysis scale 

𝑊 = ∑ ∑ ∑𝜔𝑚𝑗𝜔𝑚𝑘𝜙𝑗𝑘

𝑗−1

𝑘≠𝑗

𝑛

𝑗

𝑛

𝑚

 
The cumulative number of relationships across all 

neighborhoods fitting the analysis scale 

𝑊𝑖 = ∑ ∑𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘

𝑗−1

𝑘≠𝑗

𝑛

𝑗

 
The number of scale-fitting relationships adjacent to 

observation i 

𝐴 = ∑ ∑ ∑𝜔𝑚𝑗𝜔𝑚𝑘𝜙𝑗𝑘

𝑗−1

𝑘≠𝑗

𝑛

𝑗

𝑛

𝑚

𝑓(𝑥𝑗 , 𝑥𝑘) 
The cumulative attribute value sum across all neighborhoods 

at the given analysis scale 

The definition of the proposed statistic is based on the original statistic as given by (1). 

Most formulas in the text are given without derivation. More detailed derivations can be 

found in appendices 1 to 5. Equation 3 shows our modified version of a scale-sensitive 

Gi
*
 statistic: 

𝐺𝑆𝑖
∗ =  

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗

∑ ∑ ∑ 𝜔𝑗𝑘𝜔𝑗𝑚𝜙𝑘𝑚𝑓𝑘𝑚
𝑘−1
𝑚≠𝑘

𝑛
𝑘

𝑛
𝑗

 (3) 
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As we are operating on pairwise relationships between tuples of observations, the 

indices j and k represent the two observations being involved in that relationship. 

Thereby, the indices j and k have to be different. Otherwise, a single point would be set 

into a relationship to itself. An additional indicator variable denoted ϕjk has also been 

included. Its value is 1 if the distance between two contiguous features j and k is within 

the interval [dmin, dmax], and 0 otherwise. Furthermore, the spatial weights matrix ω is 

evaluated twice. This is necessary because both observations j and k must be adjacent to 

observation i. These modifications allow the inclusion of scale-adjusted neighborhoods 

as described in Section 4.2 and lead to a match between nominator and denominator 

scales. 

Under the null hypothesis (H0) of spatial independence, each outcome of 

function f is supposed to be occurring equally likely (i.e., P(fjk) = 1/n). Furthermore, we 

suppose pairwise independence between those outcomes. It follows that the expectation 

for f is estimated by: 

�̂�[𝑓] =  
∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
 (4) 

By using (4), we can define the empirical expectation of the GSi
*
statistic under H0 

(equation 5). The first factor and the denominator in (5) are constant across all 

neighborhoods. Therefore, these can be ignored and the equation reduces to Wi/W. It 

follows that the statistic’s local expectation is supposed to be proportional to the 

respective neighborhood’s fraction among all neighborhoods at the given scale. This is 

analogous to the original method. 

�̂�[𝐺𝑆𝑖
∗] =  

�̂�[𝑓] ∙ 𝑊𝑖

𝐴
 (5) 

 ∼
𝑊𝑖

𝑊
  

In equations (6) and (7), we develop equations for the variance of the GSi
* 

statistic. 

Therefore, we first need an equation for the estimate of the expectation of the squared 

test statistic (6). This is then used to estimate the empirical variance (7) by applying the 

so called one-pass algorithm (Chan et al. 1983). 

�̂�[𝐺𝑆𝑖
∗2

] 
=

𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)

𝐴2
 

(6) 

𝑉𝑎�̂�𝐺𝑆𝑖
∗ 

=

𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
−

𝑊𝑖
2Γ2

Φ2 +
2𝑊𝑖 (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)

2𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

Φ(Φ − 1)

𝐴2
 

(7) 

As expected, the variance under H0 becomes 0 if there are no neighbors in the vicinity 

of observation i (i.e., Wi = 0). The same applies if no corresponding scale-fitting 

relationships are located in the neighborhood (Φ = 0) or if the total attribute value sum 

(A) of all those features equals zero. Similarly, the variance estimation also becomes 
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zero if the overall neighborhood sum equals zero. In contrast, the variance is greater 

than zero if all observations are contained in the neighborhood of the current feature. 

This is a difference from the original method. However, this becomes clear when 

recalling the statistic’s principle: One neighborhood is compared against all other 

neighborhoods. Thus, the denominator is always greater than the nominator, resulting in 

a nonzero variance. 

The maximum value of our statistic is reached when all neighborhoods mutually 

contain each other. In such circumstances, the aggregation of all ϕjk for any tuple across 

the whole neighborhood forms an all-ones matrix. It follows that the maximum value of 

the GSi
*
 statistic is given as: 

max 𝐺𝑆𝑖
∗ =  

1

𝑛
 (8) 

Accordingly, the minimum value is reached if no values except the investigated 

observation itself are contained in some neighborhood. It follows that the minimum 

value is given by: 

min 𝐺𝑆𝑖
∗ =  0 (9) 

Equations (8) and (9) show that the range of the GSi
*
 statistic is not fixed. This is a 

major difference compared to the original G statistics, which range is the interval [0,1]. 

In contrast, the GSi
* 

statistic depends on the number of input features. Thus, two GSi
* 

values should not be compared with each other directly. A comparison is only 

meaningful after standardization. The standardized version of GSi
*
 is given in (10). 

Applying this equation produces standard deviates (i.e., z-scores), which appear to be 

on the interval [-∞, ∞]. Furthermore, following the well-known central limit theorem, 

these scores tend to be approximately normal, given a sufficiently large sample size. 

Therefore, these scores can be evaluated by means of normal theory. 

𝑍𝐺𝑆𝑖
∗ =

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗 −

∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
∙ 𝑊𝑖

√𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)
−

𝑊𝑖
2 (∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

2

Φ2

 (10) 

5. Empirical comparison between 𝑮𝑺𝒊
∗ and 𝑮𝒊

∗ 

We now empirically illustrate the problems that occur when applying the original Gi
*
 

statistic to multi-scale datasets such as those extracted from social media. Furthermore, 

we also show that our approach overcomes these problems. Before this is done, we 

explain the datasets that we used and all the necessary preprocessing. Please note that 

we do not aim to analyze the regions that we sampled with respect to the qualitative 

properties of the underlying phenomena. All following steps are merely illustrative for 

testing our suggested approach with respect to the scale issues that are mentioned in 

Section 5.3. 
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5.1 Dataset description 

The datasets we used were extracted from the social media service Twitter. They 

originate from an urban setting in the city of San Francisco, CA. We used two randomly 

chosen time slots. One of them covers the time period of January 30, 2014, from 8p.m. 

until 10p.m.; the second slot covers a whole week from the 20
th

 of January until the 26
th

 

of January 2014. 

Our automated crawler leveraged the public Twitter Streaming API. Since we 

are interested in applying methods from spatial statistics, we restricted our query to 

georeferenced tweets only. We crawled all tweets from a bounding box covering the 

city of San Francisco and its immediate surroundings. The bounding box had a size of 

approximately 15x15km. We did not restrict our data collection by using keywords or 

any other type of filter. The subsets of our dataset that we used for this paper sum up to 

a size of 1,291 tweets (for the two-hour slot) and 69,345 tweets (for the one-week slot). 

Figure 2 provides an overview of this subset and shows its distribution over the city. 

 

Figure 2. Overview of our test datasets originating from San Francisco, CA. Blue = 20
th

 

of January until 26
th

 of January; Red = 30
th

 of January, 8pm until 10pm. More intense 

colours indicate higher numbers of superimposed Tweets. Base data: VMAP, National 

Geospatial-Intelligence Agency, US. 
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5.2 Preprocessing and data preparation 

The crawled datasets consist of textual tweets. However, our approach as well as the 

original 𝐺𝑖
∗ statistic are designed for dealing with numerical values. Thus, we first have 

to transform the textual tweets into some numerical representation. We have chosen to 

use similarities among the tweets for our test and comparative study. In a realistic 

scenario, high similarity scores might be interpreted as indicators of coherent social 

activity (i.e., people might be reporting about similar topics). In order to obtain 

meaningful similarities, several steps are conducted. 

The first step is to split up the cohesive strings of words into single tokens. The 

tokenization process that we used follows some rules that have been adapted from the 

recent literature: The texts are split up at case changes, except if they occur at the 

beginning of a word (Metke-Jimenez et al. 2011); Twitter’s specific symbols (e.g., #, 

@) are kept (O’Connor et al. 2010), and short forms or contractions of English words 

(e.g., I’m) are retained (Pak & Paroubek 2010). Moreover, we split the tweets at 

whitespaces and punctuation marks. A large portion of the resulting tokens occurs 

frequently, but adds little meaning (e.g., “to”, “or”). Therefore, these so-called stop 

words are removed from the corpus in the second step. For this purpose, we relied on 

the English stop word list provided by the database system PostgreSQL. 

The actual similarity assessment is based on the method of Latent Semantic 

Indexing (LSI) (Deerwester et al. 1990). The core principle of this method is based on a 

singular value decomposition (SVD). First of all, the tokens are transformed into 

normalized frequencies (called Term Frequency – Inverse Document Frequency (TF-

IDF) scores). These are then used for extracting inherent components, based on word 

co-occurrence. LSI works in an unsupervised manner. Thus, no a priori knowledge 

about the text corpus is needed. However, a criterion for maintaining a reasonable 

number of components is required. In our experiments, we used a broken stick model 

for this purpose. This approach is usually used for modeling resource allocation in 

ecology. However, it has also proven to be useful for application of the SVD (Cangelosi 

& Goriely 2007). 

Again, note that our approach for assessing similarities has been chosen for the 

sake of producing numerical tweet representations. Neither similarity assessment itself 

nor analyzing our test site is the focus of this paper. Thus, the chosen approach is 

appropriate for our experiments regarding the proposed statistic. We point out that more 

accurate semantic similarity approaches might be available (e.g., Latent Dirichlet 

Allocation (Blei et al. 2003) or probabilistic LSI (Hofmann 1999)). However, these are 

more sophisticated and require more detailed a priori knowledge about the composition 

of the text corpus. Whenever realistic conclusions are to be drawn from any dataset, 

careful consideration should be given to the choice of an appropriate semantic similarity 

approach. 

5.3 Comparison between GSi
*
 and Gi

*
 

Our comparison focuses on three central problems that occur when the Gi
*
 statistic is 

applied to multi-scale datasets. All these problems occur due to the issues highlighted in 
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Section 4.1. Moreover, we also demonstrate that these issues are solved by our proposed 

solution. 

Overemphasis of dominant scales 

Recall the property of scale mixing within social media data. Figure 3 illustrates the 

average composition of five differently scaled neighborhoods. These neighborhoods are 

heterogeneous. In most cases, the actual scale of interest contributes only approximately 

30% of the total attribute value sum. This means that approximately 70% of all variation 

is contributed by scales other than the one of interest. Accordingly, when applying 

standard (i.e., single-scale) approaches for neighborhood definition, all these scales are 

considered together. 

 

Figure 3. Average composition of the attribute value sum for five classes of 

neighbourhood sizes. The respective scales of interest are highlighted by displacement. 

Dataset: Twitter, 30
th

 of January 2014, 8pm until 10pm. 

However, if 70% of the total variation is contributed by phenomena beyond 

interest, it is likely to create some bias in autocorrelation results. This is particularly the 

case when one or more of these non-relevant scales are dominating a dataset. Figure 4 

shows to what extent the respective scales are under- or overrated. It illustrates the ratio 

between the share in the attribute value sum and the share in the quantitative 

composition of the neighborhoods. It can be seen that the small scales (1-30m and 30-

100m) are overrepresented in most neighborhoods. Thus, phenomena operating at such 

scales are excessively biasing the results at other scales. 
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Figure 4. Under- / overestimation of various scales within neighbourhoods at different 

analysis scales. Dataset: Twitter, 30
th

 of January 2014, 8pm until 10pm. 

The problems described above affect the original Gi
*
 statistic in two ways: On 

the one hand, scales are superimposed in the focal neighborhoods. On the other hand, 

these are then compared against an overall mixture of scales (i.e., the denominator of 

the statistic). The larger the scale, the more different scales are potentially being mixed 

up. Figure 5 shows one of the effects caused by that behavior. The mean of the z-values 

obtained through the Gi
*
 statistic shows a strong trend with increasing scale. However, 

we are dealing with a standardized version of the statistic. Following the central limit 

theorem, the resulting standard variates are expected to be approximately normal. Thus, 

the mean is expected to be an unbiased estimator of the expectation, which should be 

close to zero in the present case. That is obviously not true for Gi
*
 when it is applied to 

social media datasets. It is very likely that this effect is caused by the scale mixture 

described in the previous paragraph. That mixture implies different underlying 

populations, since different phenomena might be operating at the different scales. Thus, 

there are also different means present in the mixture. The mean of the z-values is 

influenced by that variety of means, which in turn leads to the observed bias. 

 

Figure 5. Arithmetic means of Z(Gi
*
) and Z(GSi

*
) across all tested scales. Dataset: 

Twitter, 20
th

 of January until 26
th

 of January. 
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These effects are diminished with our suggested scale-sensitive approach. Our 

method only extracts those scales from the vicinity of observations that are relevant for 

the current analysis scale. Thus, each diagram shown in Figure 3 would only consist of 

one pie slice, each representing the respective scale of interest. The composition of the 

attribute value sum of the neighborhoods is completely made up of observations fitting 

the scale of interest. Moreover, the same applies to the comparative size. The modified 

statistic only includes those observations in any calculation that are fitting the current 

scale of interest. Therefore, the estimated means obtained through our modified statistic 

(see Figure 5) remain close to zero across all investigated scales. 

Type I/Type II errors 

The problem of overemphasizing dominant scales leads to another closely related 

problem, which is the occurrence of type I/II errors. This is a well-known general issue 

of all local statistics (Nelson 2012). It is usually caused by missing strategies for facing 

multiple testing problems. However, when dealing with multi-scale datasets, this 

problem is further exacerbated by an additional problem. When some scales are 

dominating a dataset, they also hide weaker phenomena at less dominant scales. 

However, these less pronounced phenomena are not necessarily less important. Some 

analyst might indeed be interested in analyzing these weaker phenomena. Now, several 

different configurations are possible: Some weaker phenomenon might, for instance, 

consist of some high-value accumulation. These values might, however, only be high 

according to their own respective scale. Some contiguous and more dominant scale 

might comprise even higher values. In such situations, the dominance of the other scale 

with high values leads to type II errors. H1 is rejected although high values are present 

at the adjusted scale of interest. These values just appear to be quite low in comparison 

to the more dominant adjacent scale that is present in the same neighborhood. The same 

situation occurs if a phenomenon of interest shows low-value accumulation. Higher 

values at another scale are again artificially raising the neighborhood score, leading to 

H1 rejection. In contrast, type I errors occur whenever a scale of interest is actually not 

out of the ordinary, but gets interfered by a more dominant scale. This situation might 

occur in both directions, either toward low values (cold spots) or high values (hot 

spots). In such cases, the neighborhood score is artificially raised (or lowered) to a level 

that leads to a wrong acceptance of H1. 

One example from our dataset is depicted in Figure 6, which is showing two 

series of maps. Each of those series comprises four different scales of interest in 

ascending order. Those series illustrate both issues described so far. On the one hand, 

one can see the overemphasis of dominant scales. The results obtained through the 

original Gi
*
 at the two smallest scales show a large number of statistically significant 

high-value accumulations. In fact, 33.56% of all tweets of the dataset are identified to 

be statistically significant with Gi
*
 (scale = 1-30m; two-sided test; 𝛼 = 0.1 each). In 

other words, every third tweet is considered to be part of a neighborhood that comprises 

high-value accumulation higher than 90% of the other tweets. This is obviously an 

upwards biased value, due to the dominance of that scale compared to larger ones. In 
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comparison, the results obtained through our modified approach show a considerably 

lower number of extraordinary observations. Since the dominance of scales is not 

affecting the results, that method only evaluates 3.77% of the tweets to be somehow 

abnormal. Another issue that can be seen in Figure 6 is the existence of type I errors. 

Because of the dominance effect described above, H0 is rejected too often. This does not 

only appear at the dominant scales, but is transferred onto all larger levels as well. Hot 

or cold spots occurring at small scales appear to be acting like “seeds” that are being 

enlarged at the next larger scale. Thus, the type I errors can be found with increasing 

frequency by enlarging the analysis scale. This effect also does not occur in the results 

obtained through our proposed statistic. Every scale is only analyzed against 

observations at the same scale. Thus, there is no dominance to be transferred, resulting 

into a lower number of type I errors. However, the effect of “seed” locations with Gi
*
 

leads to another issue that is described in the following subsection. 

Loss of statistical independence between scales 

We already mentioned the spill-over effect of dominant scales that are transferred onto 

all larger ones. We can also observe that this effect results into “seed” locations that 

appear to be growing as the scale is getting enlarged. However, this phenomenon leads 

to another much more serious problem, which is the loss of independence between 

spatial autocorrelation results obtained for different scales. We assume all possible 

outcomes of spatial autocorrelation statistics to be equally likely. That is, we assume the 

probabilities to be P(xa) = ∑ xa/n. If different scales are being admixed, however, this 

assumption is no longer verified; this occurs, for instance, when assessing a non-zero 

spatial autocorrelation at some small scale. If the scale is adjusted to some larger value, 

these small-scale instances are again included. The problem is that now, the outcome of 

zero has become impossible. The effect of the non-zero spatial autocorrelation at the 

smaller scale might be blurred (due to mixing) or be changed in nature (from negative to 

positive or vice versa) because other observations are included in the neighborhood. 

However, the result of having no autocorrelation is no longer possible at any larger 

scale. In other words, the independence requirement P(xb|xa) = P(xb) is no longer met. 

Since we are dealing with multi-scale datasets that reflect potentially unrelated 

phenomena, this is an inappropriate property. 
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Figure 6. Two series of analysis results. The left-hand side was obtained by applying 

the original Gi
*
statistic, the right-hand side originates from our proposed GSi

*
statistic; 

Dataset: Twitter, 30
th

 of January 2014, 8pm until 10pm; Base data: VMAP, National 

Geospatial-Intelligence Agency, US. 
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6. Conclusions 

The arising interest in analyzing social media feeds and other kinds of human-generated 

datasets compels us to address the specific problems of such data. One of those 

problems is their multi-scale nature that is due to the uncontrolled data acquisition 

process. However, most spatial statistics are designed for single-scale datasets that 

result from controlled experiments. This paper introduced a scale-sensitive version of 

the popular Gi
*
 statistic. The proposed approach comprises an alternative approach for 

neighborhood definition and a scale-adjustment of the statistic itself. Moreover, some 

scale-related issues that arise when dealing with multi-scale datasets are highlighted by 

comparing the results obtain through the original and the proposed statistics. These 

comparisons are carried out on a Twitter dataset for the city of San Francisco, CA. The 

results demonstrate that the suggested approach is better suited for dealing with multi-

scale datasets, because it allows analyzing certain scales without cross-scale 

interferences. Thus, it can be used in real-world scenarios whenever social media or 

other human-generated datasets are analyzed. 

However, scale-related effects affecting social media datasets are not yet fully 

understood. The list of issues mentioned in Section 5 is given without claiming 

completeness. There might be many more effects that are still to be discovered. 

Moreover, the effects we listed and observed have not yet been fully investigated. Thus, 

future research should focus on getting a better understanding of the multi-scale nature 

of user-generated datasets. In addition, there are many more methods from spatial 

statistics and other fields that are not yet sufficiently capable of dealing with multi-scale 

datasets. Our suggested approach might serve as a starting point for initiating 

methodological research towards multi-scale enablement. 

With respect to local autocorrelation statistics in general, more emphasis should 

be put on the definition of the null hypothesis. Geographic space imposes uncontrolled 

variance, due to varying local environmental conditions (Goodchild 2009, Anselin 

1989). Local statistics such as Gi
*
 and our proposed solution already account for 

heterogeneity with respect to the spatial distribution of observations. In contrast, they 

usually include constant expectations of the observed variable. However, the outcomes 

of those variables might also be influenced by nonstationary environmental conditions. 

One way of overcoming this problem might be to use location-dependent expectation 

functions instead of constant values. Corresponding local values might be determined 

by methods such as Geographically Weighted Regression (Brunsdon et al. 1996). 

However, a specific problem to social media data is that the underlying driving forces 

are not yet fully understood. 
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Appendix 1: Derivation of the Empirical Expectation of GSi
*
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𝑘−1
𝑚≠𝑘

𝑛
𝑘

𝑛
𝑗

 
(11) 

 =  
�̂�[𝑓] ∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗

∑ ∑ ∑ 𝜔𝑗𝑘𝜔𝑗𝑚𝜙𝑘𝑚𝑓𝑘𝑚
𝑘−1
𝑚

𝑛
𝑘

𝑛
𝑗

  

 =  
�̂�[𝑓] ∙ 𝑊𝑖

𝐴
  

Since Ê[f] and A are constant, we can infer that the expectation is proportional to the 

share of the neighbourhood’s size among the overall sum of relationship outcomes: 

 ∼
𝑊𝑖

W
  

Appendix 2: Derivation of the Expectation of the Squared GS Statistic 

𝐺𝑆𝑖
∗2

 =  
∑ ∑ ∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜔𝑖𝑚𝜔𝑖𝑝𝜙𝑗𝑘𝜙𝑚𝑝𝑓𝑗𝑘𝑓𝑚𝑝

𝑚−1
𝑝≠𝑚

𝑛
𝑚

𝑗−1
𝑘≠𝑗

𝑛
𝑗

∑ ∑ ∑ ∑ ∑ ∑ 𝜔𝑗𝑘𝜔𝑗𝑚𝜔𝑝𝑞𝜔𝑝𝑠𝜙𝑘𝑚𝜙𝑞𝑠𝑓𝑘𝑚𝑓𝑞𝑠
𝑞−1
𝑠≠𝑞

𝑛
𝑞

𝑛
𝑝

𝑘−1
𝑚≠𝑘

𝑛
𝑘

𝑛
𝑗

 (12) 

�̂�[𝑓1, 𝑓2] =
∑ ∑ ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘𝜙𝑚𝑝𝑓𝑚𝑝

𝑚−1
𝑝≠𝑚

𝑛
𝑚

𝑗−1
𝑘≠𝑗

𝑛
𝑗 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)

2𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ(Φ − 1)
 (13) 

 =
Γ2 − (∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)

2𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

Φ(Φ − 1)
  

�̂�[𝑓2] =  
∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

2𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
 (14) 

Solving (12) leads to quadratic and non-quadratic terms. Thus, we need Ê[f²] and Ê[f1,f2] 

for inferring the expectation of the squared GS statistic. Both of these values are 

constant. Therefore, we can extract them from the sums. Furthermore, ω and ϕ are 

binary and ω²ij = 𝜔, 𝜙²jk = 𝜙jk. Accordingly we can write: 

�̂�[𝐺𝑆𝑖
∗2

] =  
𝑊𝑖 ∙ 𝐸[𝑓2] + 𝑊𝑖(𝑊𝑖 − 1) ∙ �̂�[𝑓1, 𝑓2]

𝐴2
 (15) 

 
=

𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)

𝐴2
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Appendix 3: Derivation of the Empirical Variance of the Local GSi
*
 Statistic 

Applying the Steiner translation theorem leads to the variance of the statistic: 

𝑉𝑎�̂�𝐺𝑆𝑖
∗ = �̂�[𝐺𝑆𝑖

∗2
] − (�̂�[𝐺𝑆𝑖

∗])
2
 (16) 

 

=  

𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)
−

𝑊𝑖
2(∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

2

Φ2

𝐴2
 

 

Appendix 4: Derivation of the maximum of the GSi
*
 Statistic 

max 𝐺𝑆𝑖
∗ =  

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑛
𝑘=𝑗+1

𝑛
𝑗

𝑁 ∙ ∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑛
𝑘=𝑗+1

𝑛
𝑗

 (17) 

 =  
∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝑓𝑗𝑘

𝑛
𝑘=𝑗+1

𝑛
𝑗

𝑛 ∙ ∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝑓𝑗𝑘
𝑛
𝑘=𝑗+1

𝑛
𝑗

  

 =  
1

𝑛
  

Appendix 5: Derivation of the Standardised GSi
* 
Statistic 

𝑍𝐺𝑆𝑖
∗ 

=  
𝐺𝑆𝑖

∗ − �̂�[𝐺𝑆𝑖
∗]

√𝑉𝑎�̂�𝐺𝑆𝑖
∗

 
(18) 

 

=  

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗 −

∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
∙ 𝑊𝑖

𝐴

√(
𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

2𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ +
𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)

2𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

Φ(Φ − 1)
−

𝑊𝑖
2 (∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

2

Φ2

𝐴2

)

 

 

 

=  

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗 −

∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
∙ 𝑊𝑖

𝐴

√𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)
−

𝑊𝑖
2 (∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

2

Φ2

𝐴

 

 

 
=  

∑ ∑ 𝜔𝑖𝑗𝜔𝑖𝑘𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗 −

∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
𝑗−1
𝑘≠𝑗

𝑛
𝑗

Φ
∙ 𝑊𝑖

√𝑊𝑖 ∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘
2𝑗−1

𝑘≠𝑗
𝑛
𝑗

Φ
+

𝑊𝑖(𝑊𝑖 − 1) (Γ2 − ∑ ∑ (𝜙𝑗𝑘𝑓𝑗𝑘)
2𝑗−1

𝑘≠𝑗
𝑛
𝑗 )

Φ(Φ − 1)
−

𝑊𝑖
2 (∑ ∑ 𝜙𝑗𝑘𝑓𝑗𝑘

𝑗−1
𝑘≠𝑗

𝑛
𝑗 )

2

Φ2

 

 

 


