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This  research  analyses  the  suburban  expansion  in  the  metropolitan  area  of  Tehran,  Iran.  A hybrid  model
consisting  of  logistic  regression  model,  Markov  chain  (MC),  and  cellular  automata  (CA)  was  designed  to
improve  the  performance  of the standard  logistic  regression  model.  Environmental  and  socio-economic
variables  dealing  with  urban  sprawl  were  operationalised  to  create  a probability  surface  of  spatiotemporal
states  of built-up  land  use for the  years  2006,  2016,  and  2026.  For  validation,  the  model  was  evaluated
by  means  of  relative  operating  characteristic  values  for different  sets  of  variables.  The approach  was
arkov chain
ellular automata
ehran

calibrated  for  2006  by  cross  comparing  of actual  and  simulated  land  use  maps.  The  achieved  outcomes
represent  a match  of  89%  between  simulated  and  actual  maps  of  2006,  which  was  satisfactory  to  approve
the calibration  process.  Thereafter,  the calibrated  hybrid  approach  was  implemented  for  forthcoming
years.  Finally,  future  land  use  maps  for 2016  and  2026  were  predicted  by  means  of  this  hybrid  approach.
The  simulated  maps  illustrate  a new  wave  of  suburban  development  in  the vicinity  of  Tehran  at the

tropo
western  border  of  the  me

. Introduction

Over recent decades the suburbs of the metropolitan areas are
haped by urban sprawl (e.g., Glaeser and Kahn, 2004; Helbich
nd Leitner, 2010). Gillham (2002) characterises sprawl, as scat-
ered commercial strip development with low density, and large
xpanses of single-use development with poor accessibility, as well
s a lack of public open space. Beside an increasing induced traf-
c volume caused by this urban structure, the consumption of
atural resources is advocated; biodiversity is lost, among other
egative impacts. To counteract such development tendencies and
o ensure sustainability, decision makers and urban planners need
recise information on urban growth boundaries (Jiang and Yao,
010). Therefore, land use/cover change (LUCC) analysis has already
eceived considerable attention. Because the speed of development
n the emerging countries is higher than those in the developed

orld (WTO, 1996), the structural changes facing these countries
ave a greater impact on the urban fabric. Nevertheless, empirical

esearch pertaining to such developing metropolitan areas is quite
ew (e.g., Jokar Arsanjani, 2011).
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Previous studies (e.g., Clarke et al., 1997; Dietzel and Clarke,
2006; Hu and Lo, 2007; Poelmans and Van Rompaey, 2009; Huang
et al., 2010; Dubovyk et al., 2011) clearly emphasise the impor-
tance of spatiotemporal analysis of urban expansion and why
the changes in landscape have recently received more attention,
especially because of a number of major reasons: firstly, decision
makers and urban planners need precise and detailed information
on urban growth and landscape conversion, in order to assess the
amount of development, its location, characteristics, and conse-
quences of prior and subsequent urban development (Jiang and
Yao, 2010). Secondly, urban landscape structure has been a vital
subject for urban investigators in order to develop and modify theo-
ries of urban morphology (Batty and Longley, 1994; Longley, 2002).
Thirdly, by urban development and landscape change it can be
taken into consideration that the boundary between urban areas
and environment is important for some environmental models; for
instance, urban climate models (Lo et al., 1997; Jiang and Yao, 2010).
Finally, urbanisation is one of the primary consequences of glob-
alisation, especially when considering that more than half of the
world’s population is already settled in urban areas (Kaplan et al.,
2008; Jiang and Yao, 2010). Hence, the research of urban growth
and landscape change has been incorporated into a variety of pro-

grammes within the framework of global change research (Auch
et al., 2004).

Whereas urban patterns have been a vital subject in academia
to develop and modify theories of urban morphology (Batty and
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ongley, 1994; Longley, 2002; Jiang and Yao, 2010), there is still
 lack of incorporation between most dynamic simulation models
nd socioeconomic and demographic variables. Several statistical
nd geospatial models have been developed and implemented in
ifferent case studies to predict urban expansion at different scales,
uch as regression models (e.g., Hu and Lo, 2007), CA (e.g., Torrens,
006), MC  (e.g., Mousivand et al., 2007), CA-Markov models (e.g.,
okar Arsanjani et al., 2011; Mitsova et al., 2011), and machine
earning algorithms (Huang et al., 2010) among others.

Logistic regression (McCullagh and Nelder, 1989) analysis has
een one of the most frequently utilised approaches during the past
wo decades for predictive land use modelling by means of variation
f inductive modelling (Verhagen, 2007). Thereby, it is crucial to
onsider spatial effects, namely spatial autocorrelation and spatial
eterogeneity, to challenge regression assumptions (Anselin, 1988;
otheringham et al., 2000). However, the logistic regression model
uffers from the quantification of change and temporal analysis
Hu and Lo, 2007). Thus, empirical estimation and dynamic simu-
ation models have been used to simulate land use change. Various
ypes of rule-based modelling, for instance CA, are most appropri-
te for incorporating spatial interaction effects and the treatment
f temporal dynamics (Hu and Lo, 2007). Whereas CA models focus
n the simulation of spatial patterning rather than on the inter-
retation of spatiotemporal processes of urban sprawl, there is a
eficiency of incorporation among dynamic simulation models and
ocio-economic and demographic variables (Hu and Lo, 2007). Due
o limitations of each individual modelling technique, Poelmans
nd Van Rompaey (2009) proposed a hybrid approach based on
ogistic regression coupled with CA transition rules, which results
n an improved model quality, nevertheless, their model was  not
ble to quantify the amount of land use change.

Thus, the major and innovative objective of this paper is to inte-
rate CA, logistic regression, and MC  models in order to produce
emporal outputs from the logistic regression model. For this pur-
ose the case study of Tehran, Iran, is investigated. To the best of
ur knowledge, this is the first time such comprehensive modelling
pproach is conducted. Through a temporal mapping of land change
etween 1986, 1996 and 2006 future urban growth in Tehran is
imulated.

The paper is structured as follows. Section 2 presents the study
ite in Tehran, the database, and the data preparation process. The
hird section briefly introduces the methodology of logistic regres-
ion modelling to determine essential driving forces of sprawl, CA,
nd the MC  model. Section 4 discusses the outcomes of the imple-
ented approach, and finally the paper concludes with a brief

ummary and some suggestions for future works.

. Materials

.1. Study area

The study area is the metropolitan area of Tehran (Iran), the
argest city in the Middle East (Fig. 1). The official recorded popula-
ion in 2006 of Tehran city was approximately 8.5 million, and when
aking into account encroaching cities (e.g., Shahriar, Islamshahr,
hahre-Qods, Shahre-Andisheh) in the metropolitan area, that
umber exceeded 13.5 million (Census Information, 2006). Tehran
etropolis is the most heavily populated and largest city in Iran,
arked by significant differences in class and lifestyle of its citizens

Shahshahani, 2003). For the purpose of this study, an area covering
ehran city and some surrounding cities, covering approximately
900 km2, was selected. The geodatabase consists of a variety of

nvironmental and socio-economic datasets; land use maps of the
tudy area were gathered through national data providers. Further-
ore, a temporal coverage of Landsat TM and ETM+ images (USGS
lobal Visualization Viewer) from 1986 to 2006 was collected.
h Observation and Geoinformation 21 (2013) 265–275

Tehran’s elevation varies by 800 m from south to north and has a
significant impact on the settlement development, covering an area
of around 780 km2. The metropolis and its surroundings benefits
from a massive network of highways (around 285 km)  and inter-
sections, over-ramps, and flyovers (about 180 km). However, since
2007, around 130 km of highways and 120 km of over-ramps and
intersections have been under construction, which will enhance
future suburbanisation processes (Jokar Arsanjani, 2011).

2.2. Datasets

According to a review of common factors involved in land use
change modelling summarised in Poelmans and Van Rompaey
(2009) and Dubovyk et al. (2011),  two categories of driving forces
are expected to explain land use change, namely (a) environmen-
tal and (b) socio-economic factors. The utilised geospatial and
attribute data in this investigation are listed in Table 1 including
the sources and production dates.

3. Methods

This section discusses the essential characteristics of the utilised
models, which are integrated in this approach. An overview is given
in Fig. 2. First, land use maps of 1986, 1996, and 2006 were produced
by the processing of Landsat images of the aforementioned years;
additionally, temporal land change mapping was implemented.
Second, the main driving forces determining land use change, using
logistic regression, were investigated (Section 3.1). The resulting
probability surface of future land change was used in the third step
to estimate the quantity of change based on the MC  model (Section
3.2). Fourthly, whereas the MC  model is not able to allocate the
estimated amount of change and has to be integrated with other
geospatial models, a customised CA model was designed in order
to achieve the desired objective (Section 3.3). In order to verify the
results, the land use map  of 2006 was estimated and compared
against actual land use maps in the fifth step. Finally, the model
was used to simulate future land use maps of 2016 and 2026. In
effect, the shortcomings of each particular model (i.e., CA, MC,  logis-
tic regression) are eliminated by this implemented approach, which
will be discussed further in Section 5.

3.1. Logistic regression

Regression is a method to discover the empirical relationships
between a binary dependent and several independent categori-
cal and continuous variables (McCullagh and Nelder, 1989). There
are two  basic approaches to assess spatial dependency within
a regression framework: firstly, building a more complex model
incorporating, e.g., an autoregressive structure (Anselin, 1988) and,
secondly, designing a spatial sampling plot to enlarge the dis-
tance interval between sampled points. Spatial sampling leads
to a smaller sample size that loses certain information and con-
flicts with the large sample of asymptotic normality of maximum
likelihood method, upon which logistic regression is based. In gen-
eral, systematic sampling and stratified random sampling are two
approved sampling methods in logistic regression. Systematic sam-
pling reduces spatial dependency, whereas random sampling is
capable of representing population, but does not efficiently reduce
spatial dependency, local spatial dependency in particular (Huang
et al., 2009). Nonetheless, it is a reasonable approach to eliminate
spatial autocorrelation, and a reasonable design of a spatial sam-
pling scheme will provide an ideal balance between the two sides

(Xie et al., 2005). Hence, the stratified random sampling technique
was chosen.

The predicted dependent variable in a logistic regression model
is a function of the probability that a particular theme will be in one
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Fig. 1. Study area of the
ource: Census Information, 2006 and Google Earth.

f the categories; for instance, the probability of change of a specific
and use class, based on a set of scores on the predictor variables,
uch as proximity to interchange network, etc. (Huang et al., 2009).
he basic assumption is that the probability of a dependent variable
akes the value of 1 (positive response), follows the logistic curve,
nd its value can be calculated with the following formula (Mahiny
nd Turner, 2003):

(y = 1|X) =
exp

(∑
BX

)
1 + exp

(∑
BX

) (1)

here, P is the probability of the dependent variable; X represents
he independent variables, X = (x0, x1, x02,. . .,  xk), x0 = 1; B represents
he estimated parameters, B = (b0, b1, b2,. . .,  bk)

In order to linearize the above model as well as remove the
/1 boundaries for the original dependent variable which is the
robability, the following transformation is usually applied:

′ = ln
(

P
)

(2)

(1 − P)

This transformation is referred to as the logit transformation.
hus, after the transformation P′ can theoretically assume any value
etween plus and minus infinity (Hill and Lewicki, 2007). In fact,

able 1
 sketch of the utilised geospatial and attribute data.

Data Source of data 

Single building features Tehran GIS Center 

Nearby cities Tehran GIS Center 

Interchange network Tehran GIS Center 

Building blocks Tehran GIS Center 

Roads network Tehran GIS Center 

Digital Elevation Model U.S. Geological Survey 

Park  features Tehran GIS Center 

River  streams Tehran GIS Center 

Census Tehran Statistics Center 

Residential Districts Tehran GIS Center 

Land  use maps of the study area Tehran GIS Center 

Landsat images of the study area U.S. Geological Survey(USGS
politan area of Tehran.

the logit transformation of binary data ensures that the depen-
dent variable will be continuous, and the new dependent variable
(logit transformation of the probability) is boundless. Furthermore,
it ensures that the probability surface will be continuous within the
range from 0 to 1. By performing the logit transformation on both
sides of the above logit regression model, we obtain the standard
linear regression model:

ln
(

P

(1 − P)

)
= b0 + b1x1 + b2x2 + · · · + bkxk + ε (3)

3.2. Markov chain model

The MC  model is a stochastic process model that describes how
likely one state is to change to another state. It has a key-descriptive
tool, which is the transition probability matrix (Mousivand et al.,
2007). The MC  model is defined as a set of states where a process
begins in one of the states and moves consecutively from one state
to another; each move is defined as a step (Zhang et al., 2010). In

the MC  model, two  distinct land use maps at different time points
should exist, and then it is possible to calculate the probabilities of
transition between these time steps. In fact, the simplest Markov
model pays no attention to the influence of neighbour cells and only

Date Resolution

1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m
1986, 1996, 2006 30 m

) 1986, 1996, 2006 30 m
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Fig. 2. Flowchart of the Logistic–Markov–CA approach.

onsiders cell states at t1 and t2 (Eastman, 2006). The MC  model has
een rarely used to study urban sprawl and land use change (e.g.,
opez et al., 2001; Mousivand et al., 2007; Jokar Arsanjani et al.,
011); however, the MC  model will be integrated in this approach

n order to examine its performance.

.3. Cellular automata

Proximity is one of the essential geospatial elements that
mphasise the dynamics of various change events. Areas expose

 higher tendency to change to a class when they are located near
xisting areas of the same class (i.e., sprawl phenomena). These
vents can be efficiently simulated by means of CA models. In effect,
n cellular automata, there are cellular entities that independently

ary their states, as well as their immediate neighbours, according
o predefined transition rules. Various ways of defining transition
ules make CA models function differently and, consequently, pro-
uce dissimilar outputs (Eastman, 2006; Lambin and Geist, 2006).
h Observation and Geoinformation 21 (2013) 265–275

According to Wolfram (1984, page 419–424), “cellular automata
are constructed from many identical components, each simple, but
together capable of complex behaviour”. Cellular automata model is
a well-known simulation model where space and time are discrete
and interactions are only local. In fact, in CA, space is separated
into regular cells and the state of each particular cell is determined
by the state of the cell itself, as well as its surrounding cells, at a
previous time period through a set of predefined transition rules.
However, the states of each cell can be updated synchronously. The
overall performance of the system will be concluded from the com-
bined actions of all the locally defined transition rules, therefore,
the state of the system moves forward in discrete time steps. In
general, this model is also known as “What If, Then” experiment
technique (Liu, 2008). CA models have been widely implemented
in the simulation of urban systems, such as sprawl (e.g., Wu,  1996;
Torrens, 2006).

4. Results

4.1. Temporal urban sprawl mapping

For temporal land use mapping of the study area a set of Land-
sat TM and ETM+ images for the period 1986–2006 was  chosen
to extract land use maps. The availability of rich Landsat archive
imagery, with reasonable revisit time, can provide enough datasets
to cover the study area temporally. The temporal mapping needed
regular time steps between images. To this end, images of 1986,
1996, and 2006, constituting regular 10-year cycles were chosen to
be synchronised with the environmental and socioeconomic data.
Accuracy assessment by means of cross-tabulation analysis of the
map  classifications was  conducted in order to ensure the accuracy
of the maps at 91, 88, and 90%, respectively. Five land use categories
were retrieved, i.e., agricultural lands, water bodies, public parks,
open lands, and built up areas. Fig. 3 illustrates the produced land
use maps.

Land use change over the time periods 1986–1996, 1996–2006,
and 1986–2006 was considered to quantify the amount and
location of change. According to Table 3, most land conversion
replaces agricultural lands and open lands with urban areas. Over-
all, 14,333 ha have been changed to built-up areas in the total time
period. Within the period 1986–2006, approximately 5172 ha of
agricultural fields, as well as 10,533 ha of open lands have been
turned into built-up areas. Around 8281 ha have been changed to
built-up areas within 1986–1996, and 6052 ha within the period
1996–2006. Descriptive analysis shows a “big wave” of change
in the north-west, west, and south-west parts of the study area
between 1986 and 1996. For the period between 1996 and 2006,
observably the most dramatic built-up development has occurred
in the west part of the study area; however some speckle spots in
the entire study site can be observed. In addition, some areas in the
main core of the metropolis have also been developed.

4.2. Driving-forces of land use change

4.2.1. Regression model specification
The prior produced land use maps of 1986, 1996, and 2006

were used to specify the change maps over built up areas for the
periods 1986–1996, 1996–2006, and 1986–2006, respectively. The
following input dataset was designed at 30 m resolution due to
compatibility with other accessible data. The dependent variable
in this implementation is the developed cells (i.e., change from no

built-up area to built-up area) presented as a binary raster where
a value 1 indicates change on the specific pixels and zero indicates
no change within a time period (e.g., 1986–1996). Fig. 4 represents
the pattern of each dependent variable.
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Fig. 3. Extracted land use maps of 1986 (upper left), 1996 (upper right), and 2006 (lower left).

Table  2
Quantity of land use change over time in terms of hectare and percent of each category.

Year 1986 1996 2006 1986–1996 1996–2006 1986–2006

Category ha % ha % ha % (ha) (ha) (ha)

Agricultural Field 45,175 24.2 41,179 22.1 40,003 21.5 −3996 −1176 −5172
Built-up Area 44,783 24.0 53,064 28.5 59,116 31.7 8281 6052 14,333

81

r
2
a

F
(

Open  Land 92,302 49.5 87,330 46.8 

Public Park 4080 2.2 4746 2.5 

Water Body 104 0.1 125 0.1 
A set of predictor variables was chosen based on preliminary
esearch (e.g., Poelmans and Van Rompaey 2009; Dubovyk et al.,
011) over the study area as well as expert knowledge. It was
ssumed that some social variables, such as population density,

ig. 4. Dependent variable Y; change to built-up area within 1986–1996, 1996–2006, and
For  interpretation of the references to color in this figure legend, the reader is referred to
,769 43.9 −4972 −5561 −10,533
5393 2.9 666 647 1313

163 0.1 21 38 59
categorical census, single building features, and farming land
would correspond to the shape of Tehran’s urban patterns, e.g.,
physical development might take place in non-densely populated
areas, close to building blocks and near to single building features,

 1986–2006, respectively (left to right) (no change: black cells; change: red cells).
 the web version of the article.)
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Table  3
Relative operating characteristic (ROC) and adjusted odds ratio values for 18 sets of
variables.

ROC Adjusted
odd ratio

Variables Set 1 0.8441 20.102
Variables Set 2 0.7831 76.964
Variables Set 3 0.844 217.224
Variables Set 4 0.7766 52.355
Variables Set 5 0.6635 30.513
Variables Set 6 0.9223 262.327
Variables Set 7 0.9352 503.255
Variables Set 8 0.9218 260.128
Variables Set 9 0.7167 32.804
Variables Set 10 0.7187 34.114
Variables Set 11 0.8906 16.052
Variables Set 12 0.8915 165.333
Variables Set 13 0.8945 15.942
Variables Set 14 0.7531 47.522
Variables Set 15 0.8031 11.586
Variables Set 16 0.8053 120.991
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Table 4
Effective variables in urban growth between 1986 and 1996 and their coefficients.

Variable Coefficient

Urban growth between
1986 and 1996

Intercept −23.1033
Distance to CBD 0.000165
Census 0.597356
Distance to nearby Cities −0.000001
Northing Coordinates −0.000072
Population Density 0.000236
Distance to Residential Areas −7.428991
Distance to Single Buildings 1.367012
Easting Coordinates −0.000061
Farming 19.776172
Distance to Building Blocks −0.003773
DEM −0.001391
Distance to Interchange −0.000044
Open lands 20.618511
Distance to Parks 18.393214
Distance to Roads 0.000026
Variables Set 17 0.8039 114.385
Variables Set 18 0.7392 57.809

nd farming lands. Thus, the aim is to discover the positive or
egative influences of each particular variable. However, other
ocial variables were not accessible to be utilised in this approach.
opulation density is defined as a social variable, which determines
er capita population per area unit and is expressed as persons per
ectare. It was also taken into account that some econometric and
nvironmental variables, such as distance to central business dis-
rict (CBD), distance to the nearby cities, distance to interchange,
pen land features, distance to road network, altitude, distance
o stream, and slope, might alter land use patterns in the study
rea (see Table 2). For instance, since it was presumed that the
xact location influences the amount of change in Tehran, nor-
hing and easting coordinates were taken into consideration: e.g.,
he negative coefficient of the easting and northing coordinates
ariables verify that land changes are occurring towards west and
outh. Moreover, the coefficients of these variables also determine
he severity of the variables, that is, land conversion occurs more
ntensively in the south rather than in the west of Tehran.

Logistic regression was estimated for 18 different sets of variable
ombinations in order to reach the highest possible relative operat-
ng characteristic (ROC) and adjusted odd ratio values. Essentially,
he odds ratio depicts the degree of correlation or non-dependence
etween two binary data, which is known as the measure of effect
ize. It is a significant index of logistic regression and is utilised
s a descriptive statistics. Despite other measures of relationship
or paired binary data, such as the relative risk, the odds ratio
ompares the two respective variables symmetrically, and can be
alculated using some types of non-random samples (Edwards,
963; Mosteller, 1968). In fact, probability values vary in the range
etween 0 and 1, which state the possibility of an event as a
roportion of both incidence and non-incidence. Odds depict the

ikelihood of an occurrence relative to the likelihood of a non-
ccurrence (Pampel, 2000).

Model calibration was done as a two-step procedure including
nitial calibration and refining, respectively. The approach was  car-
ied out for each set of variables to assess their reliability (Table 3).
n order to select the optimum set of variables, it had to reach the
ighest ROC value, which verifies the validity of the model.

In this study, the ROC method was performed to validate the
erformance of the approach. The ROC method has been lately
ntroduced to the land use/cover change modellers to compute the
orrelation between simulated changes and actual changes, which
s a reliable technique to assess the validity of an approach (e.g.,
ontius and Schneider, 2001). Essentially ROC assesses how well a
Slope −0.047149
Distance to Streams −0.000013

pair of maps fit in terms of the location of developed pixels (Pontius,
2000; Hu and Lo, 2007). Necessarily ROC = 1 indicates a perfect fit
and ROC = 0.5 indicates a random fit. A higher adjusted odds ratio
is expected for a better fit and higher validity (Eastman, 2006). The
highest value of 0.953 was  obtained, which verifies the accuracy of
this model. A descriptive table of appropriate variables, as well as
their levels of measurement, are shown.

This set of variables comprises the raster variables as shown in
Fig. 5 and Table 4 demonstrates the impact degree of each particular
variable in the approach.

According to Table 4, some variables which have positive values
have a positive impact and thus advocate suburban developments
(e.g., proximity to the CBD, categorical demography, population
density, proximity to single buildings, farming lands, open lands,
proximity to parks, and proximity to roads). Where variables return
negative values the attraction for development falls significantly
(e.g., proximity to nearby cities, proximity to streams, northing
coordinates, easting coordinates, proximity to residential area,
proximity to building blocks, elevation, slope, and proximity to
interchange).

In other words, those pixels which are closer to the CBD area
have more probability of development, whereas cells which are
in steep slopes have less probability of change. Importantly, the
coefficients explain the intensity of influence in the occurrence of
development, for example, proximity to parks is a significant factor
in such development. Although, a set of other input data, such as
distance to educational institutions, administration areas and fac-
tories had been evaluated but result in low ROC values (Table 3) and
consequently were rejected. Hence, seventeen predictors (Fig. 5)
were eventually designed for this run.

The output product of the logistic regression model is a prob-
ability surface of dependent variable occurrence, indicating urban
development (see Fig. 6). The probability surface shows that each
single cell will be developed with a particular amount of probability
(1 = high probability, 0 = low probability). However, this approach
is not able to specify the amount and location of change, but can
be integrated with other techniques to quantify and allocate the
change. Hence, this probability map  will be integrated with the MC
model to quantify the extent of the changes, and CA to allocate the
predicted changes. Thereafter, the obtained quantity of change will
be allocated in the entire map. The allocation process starts from
the maximum value of probability working downward.
4.2.2. Validation of logistic regression model
By means of the prepared probability surface, the computed

quantity of change can be allocated. In this approach, the amount
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Fig. 5. Raster layers of independent variables for the optimum model represented as binary and continuous values.
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Fig. 6. Transition surface map  of study area from 1996 onward.

f change was determined based on the transition matrix of the MC
odel to quantify the changes, then the obtained amount was input

o the allocation phase. A customised cellular automata function
as coded in the Python programming engine in order to sub-

ract the existing built-up areas before beginning the allocation
f change from the highest probable cell to the lowest probable
ell. This function exerts a 3 × 3 size kernel over the study area and
ubstitutes non-built up cells with built up cells in the event that
he probability of change within the kernel is high. This function
ontinues the allocation process until it distributes the estimated
uantity of change (see Jokar Arsanjani, 2011).

Hence, after executing the designed logistic regression, a pre-
icted transition probability surface map  was created for 1996
nward (Fig. 7), which can be used for change specification for
ubsequent periods (2016, 2026).

.3. Quantification of future changes

The MC  model was run to quantify changes, with a pair of land
se images as input and a transition probability matrix, a matrix

f transition areas, as well as a set of conditional change probabil-
ty images as output. The produced results record the probability

atrix that shows the probability for each land cover category to

Fig. 7. Transition surface map  of development from 2006 onward.
h Observation and Geoinformation 21 (2013) 265–275

change to any other categories (see Table 5). The transition proba-
bility matrix was calculated by the contingency matrix displaying
the relative frequencies of land change at a certain time period
(Cabral and Zamyatin, 2009). The transition areas matrix is a table
which records the amount of pixels that are anticipated to change
from one particular land use category to other categories according
to a number of time units (see Table 6). The results (i.e., matrices)
were used for further change analysis and determine the estimated
quantity of change that is assumed to be an input for the logistic
regression model.

MC is not a spatially explicit model; therefore, it is not an appro-
priate model to estimate the location of change, which needs to
be integrated with other spatial models and in this investigation,
logistic regression and CA models were chosen to spatialize the
estimated change quantity. Nevertheless, it is a good quantity esti-
mator for its outcomes to be allocated (Kamusoko et al., 2009). As
shown in Table 5, the probability of converting each land category
to others can be determined by the MC  model, i.e., based on the
Markov transition probabilities matrix of 1986–1996, the agricul-
tural field category remains constant at 88.35% probability, and will
change to built-up category at 4.87% probability, etc. This matrix
will be further used to quantify the amount of change for each cat-
egory. Furthermore, the estimated amount of change from each
land type to the other existing land types for 2016 and 2026 has
been demonstrated in Table 6.

In order to validate the proposed approach, the probability map
of change for 1996 was utilised to allocate the attained quan-
tity of change (Table 5) through the customised cellular automata
function. It was aimed to simulate the land use map  of 2006 and
compare it with the actual map  of 2006. Being aware of Pontius and
Millones’s (2011) critics, kappa statistic for map classification com-
parison (actual map  vs. simulated maps) was applied and revealed
a Kappa index of 0.89. According to Landis and Koch (1977),  this
task verifies and approves the simulation process; accordingly, the
approach can also be executed for future years (i.e., 2016, 2026).

4.4. Implementation of the hybrid model and final outcomes

A set of independent variables satisfied the preliminary
designed approach after statistical assessment. The predefined
independent variables were imported again to the logistic regres-
sion. Then the prior produced land use maps for 1986, 1996, and
2006 were used to specify the change maps over built-up areas
within the time ranges 1986–1996, 1996–2006, and 1986–2006.
The statistical evaluation and achieved ROC values and adjusted
odds ratios for each set of combined variables (see Table 3) were
suitable tools to identify the best predictor variables.

The highest ROC value determines the optimal set of input vari-
ables; moreover, higher adjusted odds ratios verify the validity and
fitness of the chosen set. The highest obtained ROC value, at 0.953,
allowed us to pick the appropriate set of variables as input files
as shown in Table 3. A predicted change probability surface map
and a residual map  indicating the difference between the predicted
and the observed probability were generated and its inspection
shows no violations of the model assumptions. Therefore, in order
to allocate the proper quantity of change on the probability surface,
the transition matrix produced by the MC  model was preferred to
quantify the amount of change.

Based on the probability surface, as well as the change demand
quantity, the CA function was applied on the transition surface map
(Fig. 7) to produce the land cover maps of 2016 and 2026 (see Fig. 8).
This probability surface enables us to predict upcoming changes

in any proper year (i.e., 2016, 2026). In fact, once the model val-
idation process and the qualification of this model were assured,
land use maps were predicted for 2016 and 2026. Logistic regres-
sion requires updated data for the specific times to be accurate for
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Table  5
Markov transition probabilities matrix for the periods 1986–1996, 1996–2006 and 1986–2006.

Agriculture field Built-up Open land Public park Water body

Probability value of 2006 based
on transition matrix of
1986–1996

Agricultural Field 0.8835 0.0487 0.0615 0.0062 0.0001
Built-up 0.0007 0.9907 0.0054 0.0031 0.0001
Open Land 0.0133 0.0689 0.9124 0.0052 0.0001
Public Park 0.0000 0.0335 0.0232 0.9428 0.0005
Water Body 0.0105 0.0000 0.0000 0.0000 0.9895

Probability value of 2016 based
on transition matrix of
1996–2006

Agriculture Field 0.9361 0.0402 0.0218 0.0017 0.0002
Built-up 0.0036 0.9873 0.0055 0.0035 0.0000
Open Land 0.0144 0.0576 0.9223 0.0055 0.0003
Public Park 0.0018 0.0088 0.0064 0.9816 0.0013
Water Body 0.0211 0.0102 0.0000 0.0066 0.9621

Probability value of 2026 based
on transition matrix of
1986–2006

Agriculture Field 0.8469 0.0936 0.0493 0.0096 0.0005
Built-up 0.0003 0.9885 0.0059 0.0052 0.0001
Open Land 0.0188 0.1131 0.8579 0.0099 0.0003
Public Park 0.0000 0.0434 0.0198 0.9362 0.0005
Water Body 0.0105 0.0009 0.0000 0.0000 0.9886

Table 6
Calculation of quantity of change (transition area matrix) through Markov chain model for 2016 and 2026 in hectare.

Agri lands Built-up Open lands Public parks Water body

2016 Agri lands 37,424 1605 871 69 9
Built-up 214 58,326 324 206 2
Open  lands 1175 4702 75,355 448 26
Public  Parks 10 47 35 5290 7
Water  Body 4 2 0 1 158

2026 Agri  lands 33,857 3744 1972 385 21
Built-up 17 58,398 347 305 7
Open  lands 1537 9239 70,096 806 28
Public  Parks 0 234 107 5046 3
Water  Body 2 0 0 0 162

2026 (
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Fig. 8. Simulated land use maps of 2016 (left) and 

rediction, i.e., the map  of the proposed road network for 2016 is
eeded for an enhanced forecast.

. Discussion and conclusions

In this investigation, a logistic regression model was combined
ith the MC  and CA models in order to develop an efficient hybrid

eospatial explicit approach. The logistic regression model has the
dvantage of exploring relationships between land conversion and
ausative factors quantitatively, which enables us to distinguish

etween the effective variables (Park et al., 2011). However, a
imple logistic regression model suffers from several limitations,
uch as temporal determination of change, change quantification,
s well as change allocation (Hu and Lo, 2007). Therefore, the
right) through the Logistic–Markov–CA approach.

present approach was  designed and performed to rectify the afore-
mentioned constraints and to discover the interaction of various
environmental and socio-economic variables which cause urban
sprawl (Fig. 5).

Various factors, which were assumed to cause urban growth in
the study area, were taken into account (see Table 4). Less effective
variables were excluded to promote the quality of the model after
consideration of possible combinations of variables. The optimum
set of variables was chosen according to the computed ROC values
(Table 3) as input into the developed approach, to subsequently

simulate the urban expansion in the study area, for 2016 and 2026
(Fig. 8).

These three techniques were combined for the following pur-
poses: firstly, the logistic regression model was  utilised to create
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 probability surface and to determine the most probable sites for
evelopment; secondly, the MC  model was used to retrieve the
uantity of change. Because land development policy has been

nconsistent in recent years (where it has allowed property devel-
pers to multiply high-rise constructions for maximum profit)
opulation growth and land development rates are impossible
o synchronise. For example, if a plot of land has been allocated
or the purpose of constructing a one-family home, the developer

ay  instead choose to turn the building into a multi occupancy
partment block. Thirdly, the CA model is a significant tool to allo-
ate probable changes under predefined conditional rules. This CA
odel allocated the amount of change, beginning with the cells

f highest probability. Therefore, the approach is capable of pre-
icting the most probable sites for development, estimating the

ikely amount of change as well as allocating the estimated quan-
ity within the study area. An integration of CA and MC  models
CA–Markov model) has been already implemented and carried out
n the same study area by Jokar Arsanjani et al. (2011) and its results
ave verified the validity of this approach.

This paper has attempted to demonstrate that this hybrid
echnique (i.e., Logistic–Markov–CA) offers certain advantages
ompared with traditional techniques. Firstly, this approach is
apable of considering and integrating environmental and socio-
conomic factors, which are not considered in current CA models,
.g., SLUETH (Clarke et al., 1997; Yang and Lo, 2002; Dietzel and
larke, 2006). Secondly, any spatial factor can be imported to this
pproach in order to measure its influence on urban sprawl and,
ccordingly, can be rejected after statistical assessment. Finally, the
entioned approach was tested and verified in two steps: (i) while

he approach was being developed (i.e., the model calibration pro-
ess) and (ii) through the comparison of the actual map  and the
imulated map  of 2006, which was generated to verify the outcome
f the approach. Whereas the validation of the current LUCC models
s still weak (Pontius et al., 2004), it is not feasible to validate the cer-
ainty of the simulated maps for the future. Thus, the only possible
ay to verify the model was to validate it at the most recent time,

nd following the assurance of the model’s performance, future
and use maps could be simulated more confidently.

Although logistic regression models suffer from a lack of alloca-
ion process, in this investigation the CA module has covered this
eakness. Logistic regression uses data at different scales (raster
ata, census data, etc.), but the model per se ignores this fact, which
an result in model bias. Due to the hierarchical structure of the
ata (cells are nested within municipalities) multi-level modelling
Goldstein, 2010) may  have high potential to model the relation-
hip between land use change and its driving forces, by explicitly
nd systematically taking different spatial scales, spatial auto-
orrelation and heterogeneity into account. Despite its appealing
roperties for land use modelling, empirical applications are rare.
otable exceptions promoting its statistical appropriateness are
ance and Iovanna (2006) as well as Overmars and Verburg (2006).
his enhanced model specification underpins the need for much
dditional work in future researches before a complete understand-
ng of urban expansion is achieved.

Yet, despite the strengths of this approach, our investiga-
ion has also highlighted the considerable limitations of the
pproach. Though the method can incorporate various driving
orces, it does incorporate certain limitations in parallel mod-
ls, such as the non factoring of individuals’ behaviour, personal
references and governmental actions in land use conversions
hich agent-based modelling (ABM) performs. Neither simple

ogistic regression models nor hybrid logistic regression models

onsider any individual-related factors. Therefore, Geosimulation
Benenson and Torrens, 2004) and ABM (e.g., Crooks, 2007) take
he human-related variables into consideration more effectively
nd, consequently, dissimilar outcomes will almost certainly occur.
h Observation and Geoinformation 21 (2013) 265–275

It is our recommendation, therefore, that agent-based modelling
should be implemented on the same study area in order to com-
pare the current and traditional models and their outcomes against
the agent based modelling approach.
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