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Abstract

Background: Lithium as a substance occurring naturally in food and drinking water may exert positive effects on
mental health. In therapeutic doses, which are more than 100 times higher than natural daily intakes, lithium has
been proven to be a mood-stabilizer and suicide preventive. This study examined whether natural lithium content
in drinking water is regionally associated with lower suicide rates.

Methods: Previous statistical approaches were challenged by global and local spatial regression models taking
spatial autocorrelation as well as non-stationarity into account. A Geographically Weighted Regression model was
applied with significant independent variables as indicated by a spatial autoregressive model.

Results: The association between lithium levels in drinking water and suicide mortality can be confirmed by the
global spatial regression model. In addition, the local spatial regression model showed that the association was
mainly driven by the eastern parts of Austria.

Conclusions: According to old anecdotic reports the results of this study support the hypothesis of positive effects
of natural lithium intake on mental health. Both, the new methodological approach and the results relevant for
health may open new avenues in the collaboration between Geographic Information Science, medicine, and even
criminology, such as exploring the spatial association between violent or impulsive crime and lithium content in
drinking water.
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Introduction
One of the first anecdotic evidence of effects of lithium
containing water on mental health was mentioned by
Cade [1]. Since then, several studies have investigated
the relationship between the naturally occurring lithium
content in drinking water and suicide mortality [2-5], a
relationship which is plausible since lithium is a well
recognized mood-stabilizer and suicide preventive in
psychiatric treatment nowadays. However, this relation-
ship is also somewhat surprising, as the level of lithium
for therapeutic use is multiple times higher than natu-
rally occurring lithium. The first ecological study on the
association of lithium in drinking water and suicide rates
came from Texas, US. This study was based on aggre-
gated data from 27 counties grouped into low, medium,
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and high lithium counties and statistically tested by t-
tests to explore relationships between lithium and crime,
suicide, etc. within each of the three groups [2]. Twenty
years later, utilizing more comprehensive statistics of
weighted ordinary least-squares (OLS) regression,
Ohgami et al. [3] confirmed the association using data
on lithium in drinking water from 19 municipalities in
Oita, a prefecture of Japan. This study sparked interest
and was followed by two subsequent studies from Eur-
ope. Kabacs et al. [4] examined 47 subdivisions of coun-
ties in East England using a Pearson’s correlation
coefficient to examine the association, but found results
to be not significant. Finally, a nationwide study of all 99
districts of Austria based on the most comprehensive
lithium measurement of 6,460 water samples, applied
weighted univariate and multivariate OLS, again con-
firming the suicide preventive potential of natural lith-
ium even after adjustment for confounding factors [5].
However, the main limitation of all these studies is that
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they do not consider the unique properties of space,
having serious consequences concerning the statistical
validity of published results (see, e.g. [6-8]).
Essential special properties of geospatial data are

spatial autocorrelation and spatial heterogeneity (non-
stationarity). The first property implies a spatial associ-
ation between an attribute value at a particular location
and attribute values at other locations close by. The sec-
ond property describes systematic spatial variation of
attribute values across space [6,7]. It is well established
that these spatial effects must be taken into account
when modeling the spatial relationship in a regression
framework [6], such as the association between the
amount of lithium in drinking water and mortality ratios
or other explanatory variables across space. The conse-
quence of ignoring both spatial effects makes statistical
inference invalid and results in misleading conclusions
(for a detailed discussion see, e.g. [6-8]).
Therefore, in contrast to all previous research [2-5]

this study models both spatial autocorrelation and non-
stationarity explicitly by means of global and local spatial
statistical models and thus aims to challenge the hypoth-
esis of lithium as a suicide preventive substance in nat-
ural distribution.

Data and methods
The same original data set as in [5] is used in this ana-
lysis. In total, 6,460 water samples from drinking water
supplies from 99 Austrian districts were analysed for
lithium. The average was 65.3 samples per district, with
a range from 1 to 312 samples. The lowest measurable
threshold lithium level by inductively coupled plasma
optical emission spectrometry was 0.0033 mg/l. For the
statistical calculations, lithium levels were averaged per
district with a mean lithium level of 0.0113 mg/l (SD ±
0.027). Further, data on suicide rates adjusted as stan-
dardized mortality ratios (SMR; [9]), proportion of
Roman Catholics, population density, and per capita in-
come were obtained from Statistics Austria. Density of
psychiatrists, general practitioners, and psychotherapists
were obtained from the Austrian Medical Chamber and
the Austrian Institute of Health (ÖBIG). Unemployment
rates per district were obtained from the Austrian Public
Employment Service (AMS) and were averaged for the
available years 2005–2008. Further details were
described previously in [5].
First, exploratory spatial data analysis is applied to

demask spatial patterns which may contradict funda-
mental model assumptions of the subsequent regression.
To start off, spatial autocorrelation and non-stationarity
in the variables are explored using the global Moran’s I
and the local G*-statistic. In this context “global” refers
to testing for spatial autocorrelation for the entire study
area at once and deriving a single value indicating
whether spatial autocorrelation exists and what its
strength is.
The Moran’s I [10] is a widely used measure of global

spatial autocorrelation, which tests whether there are
some relationships between location and attribute
values. A significant positive statistic indicates that
nearby locations of similar attribute values are more
spatially clustered than randomly distributed. In con-
trast, a significant negative statistic shows dissimilar
values at nearby locations showing a more dispersed
pattern.
This global measure is not capable to explore distinct-

ive local features as well as the non-stationarity of a
spatial process. Often, a non-stationary response variable
is a first clue for spatially-varying relationships in a
multivariate regression model. Therefore, Getis and Ord
[11] have introduced the G*-statistic to detect clusters of
high or low values by location. High positive values refer
to “hot spots” and high negative values to “cold spots”.
As such, “hot spots” can be described as areas, where
districts with high levels are surrounded by other dis-
tricts with high levels. In contrast, “cold spots” are clus-
ters with low level districts surrounded by other low
level districts. A crucial step in spatial modeling is the
choice of an appropriate representation of space. Com-
mon choices for such representations are, for instance,
contiguity, k-nearest neighbors, among others. For a
summary see [12].
The classical ordinary least squares (OLS) model is

widely used to model the global relationship between a
response and one or more explanatory variables. OLS
assumes, among other things that residuals are spatially
independent. Residual autocorrelation captures unex-
plained similarities between neighboring districts, which
can be a results of omitted variables or a misspecifica-
tion of the regression model in general [13]. Accounting
for spatial effects reduces the magnitude of the predic-
tion error, removes most of the systematic error, and
leads to more reliable estimates [8]. In this study the
OLS model serves as the reference model.
Global models that account for spatial effects are spatial

autoregressive models, introduced by Anselin [6]. They
comprise of two special cases, namely the spatial lag and
the spatial error model. The spatial lag model extends the
standard OLS regression model by including a spatially
lagged dependent variable, which can be mostly inter-
preted as spill-over effects. Ignoring this lagged dependent
variable leads the OLS model to be biased and inconsist-
ent [14]. This model will be referred to as the spatial auto-
regressive (SAR) model in the reminder of this article. The
spatial error model addresses the presence of spatial auto-
correlation by defining a spatial autoregressive process for
the error term and, by doing so, captures unexplained
similarities. Not considering this spatial process in the



Table 1 Spearman correlation rs between standardized
mortality ratios (SMRs) for suicide (2005–2009) and
district characteristics

District characteristics Suicide SMR

rs p-val.

Lithium level, mean (mg/l) −0.26 0.009 **

Population density (per km2) −0.35 0.000 ***

Per capita income (in 1,000 Euro) −0.47 0.000 ***

Proportion of Roman Catholics, % 0.37 0.000 ***

Unemployment rate, % −0.14 0.178

Psychiatrist density (per 10,000) −0.41 0.000 ***

Psychotherapist density (per 10,000) −0.49 0.000 ***

General practitioner density (per 10,000) −0.17 0.099

Signif.: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.

Table 2 Global Moran’s I statistic for variables included in
this study

Moran’s I p-val.

Dependent variable:

Suicide SMR 0.392 0.001 ***

Independent variables:

Lithium level 0.400 0.001 ***

Population density 0.015 0.269

Per capita income 0.551 0.001 ***

Prop. of Roman Catholics 0.276 0.001 ***

Unemployment rate 0.060 0.171

Psychiatrist density 0.066 0.132

Psychotherapist density 0.090 0.072

General practitioner density 0.041 0.668

Signif.: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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error term yields the OLS estimates to be inefficient, al-
though unbiased [14]. The Lagrange multiplier test statis-
tic (LM) on the estimated OLS residuals helps to decide
between these two alternative model specifications.
Global regression models assume a homogeneous be-

havior of the estimated parameters across space, which
has often proven to be unrealistic. A way out is the ap-
plication of the Geographically Weighted Regression
(GWR), a local regression model that explores local
spatial variations of the parameters [15]. The GWR
models spatial autocorrelation and spatial heterogeneity
for subsets of the entire data set. Each subset is estab-
lished around a regression point with near data points
exhibiting a higher influence than more distant data
points. The weighting is often based on a bisquare ker-
nel function (e.g. [16]). The setting of an appropriate
bandwidth length of the weighting function is crucial.
The most common is the adaptive bandwidth, where its
length is allowed to vary across space, depending on the
density of the data points. In densely populated areas
the kernel possesses a shorter bandwidth in contrast to
regions with larger inter-point distances, where the
bandwidth is longer [15]. A kernel function with an
adaptive bandwidth improves the goodness-of-fit, if data
points are irregularly distributed across space. Despite
the critique that the GWR is more suitable for explora-
tory analysis (see e.g. [17,18] and references therein), it
is a flexible model type to investigate spatially varying
relationships, which is the focus of this research. GWR
estimations are modeled for the same level of aggrega-
tion or spatial units as the original data and can be inter-
preted in the same way as OLS regression estimates.

Results
In a step-by-step approach, an exploratory spatial data
analysis, a global non-spatial regression model, a global
spatial regression model, and finally a local spatial re-
gression model were developed and applied to explore
the association that lithium and other factors have on
suicide mortality.

Exploratory (spatial) data analysis
In the analysis to follow, the standardized mortality ratio
(SMR) is the dependent variable. The eight independent
variables include mean lithium level, population density,
per capita income, proportion of Roman Catholics,
psychiatrist density, psychotherapist density, general
practitioner density, and unemployment rate.
Non-parametric Spearman’s correlations (Table 1)

show that suicide mortality is significantly correlated
with mean lithium levels per district, population density,
per capita income, the proportion of Roman Catholics,
as well as the density of psychiatrists and psychotherap-
ist. These six variables are thus potential candidates for
influencing suicide mortality in a multivariate regression
model. In contrast, the unemployment rate and the gen-
eral practitioner density did not significantly correlate
with the suicide SMR.
A significant Moran’s I statistic is a first clue that par-

ameter estimates in an OLS regression maybe affected
by spatial residual autocorrelation. For this reason, the
Moran’s I statistic was calculated for the dependent and
all eight independent variables included in this study.
The neighbourhood relationships for calculating the
Moran’s I statistic are defined as first order queen con-
tiguity, which is commonly used in applied research
(e.g., [16]). Results indicate that both the suicide SMR
and three of the eight independent variables exhibit sig-
nificant global positive spatial autocorrelation. All other
five independent variables possess a positive spatial auto-
correlation that is not significantly different from a
spatially random distribution (Table 2).
The spatial distribution of a variable having significant

positive spatial autocorrelation usually shows statistically
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significant clusters of high (i.e., hot spots) and low values
(i.e., cold spots). In Figure 1, significant hot and cold
spots of the suicide SMR are depicted using the local
G*-statistic. The distribution clearly indicates a large sig-
nificant cluster of high suicide SMRs in the south (dark
gray districts) and a large significant cluster of low sui-
cide SMRs in the eastern portion (light grey districts) of
the study area. Districts in white exhibit an insignificant
spatial distribution of suicide SMR.

Global non-spatial regression model
Exploring the relationship between the eight independ-
ent variables and suicide SMR starts out with a multi-
variate OLS regression model. Results show that the
eight independent variables explain about 32% of the
variance in the suicide SMR. Of those, only lithium
levels and the proportion of Roman Catholics are signifi-
cant predictors (Table 3, left column). Next, a stepwise
regression model is estimated with the final model in-
cluding only those independent variables, for which the
regression coefficients are statistically significant by min-
imizing the Akaike Information Criterion (AIC, see, e.g.
[20]). In addition to the explanatory power of a model
the AIC also considers model complexity and results in
a more parsimonious model [20]. The final stepwise
multivariate regression model includes lithium levels,
the proportion of Roman Catholics, and the psychiatrist
density as the only three independent variables (Table 3,
middle column). While the psychiatrist density is not
statistically significant, it is still kept in the model by the
stepwise algorithm and thus provides explanatory power.
Removing this variable from the model would have
resulted in an increase of the AIC score from −72 to
−59 and a significantly worse performing model. The
three independent variabels in the final stepwise model
not only explain slightly more of the variation in the sui-
cide SMR (R2

adj= 0.323 for the stepwise versus R2
adj=

0.321 for the full model), but also perform significantly
Figure 1 Significant local G*-statistic for suicide SMR (for multiple com
significant).
better than the full model based on the AIC values (−73
for the stepwise versus −68 for the full model). A more
detailed analysis of the residuals from the final stepwise
regression model reveals that they are normally distribu-
ted (Jarque Bera test (JB) = 1.110; p= 0.574) and homo-
scedastic (studentized Breusch-Pagan test (BP) = 5.133;
p= 0.162). Because a bivariate correlation analysis of the
independent variables showed potential for multicolli-
nearity, Variance Inflation Factors (VIFs) are investi-
gated. Since all VIF scores are below the critical value of
5, as suggested by Fox [21], multicollinearity is rejected.
The F-test with p< 0.001 indicates that the final step-
wise regression model is statistically highly significant.
Finally, residual independence is tested by the Moran’s I.
This test shows significant spatial residual autocorrel-
ation (I= 0.179; p= 0.002), violating the model’s inde-
pendence assumption. This residual pattern in the
stepwise OLS model can be a result of existing spatial
effects and can be accounted for by means of a spatial
autoregressive model.

Global spatial regression model
Of the two different types of spatial autoregressive mod-
els, the (robust) LM test recommends the use of a
spatial lag model (rob. LM: 8.477; p= 0.004). Again, vari-
ables are selected based on the full model and predictors
that do not make a significant contribution on a 0.05
level are omitted stepwise. In the final global spatial lag
model, both the lithium level as well as the proportion
of Roman Catholics are significant predictors of the
overall suicide SMR, the psychiatrist density is nearly
significant at α= 0.1 level but its consideration in the
model does not increase the AIC (Table 3, right col-
umn). Sensitivity analysis with different neigbourhood
configurations confirm the robustnes of these results.
A Jarque Bera test (JB = 3.038; p= 0.219) shows that

the residuals are normally distributed, homoscedastic
(BP = 4.303; p= 0.231), and no longer significantly
parisons p-values are adjusted [19], non-shaded districts are not



Table 3 Global regression estimates on standardized mortality ratios (SMRs) for suicide (2005–2009)

OLS (full): OLS (stepwise): SAR:

Coeff. t-val. p-val. Coeff. t-val. p-val. Coeff. z-val. p-val.

Intercept 0.612 1.908 0.060 0.419 2.491 0.014 * 0.159 0.977 0.329

Lithium level −7.000 −4.347 0.000 *** −7.139 −4.847 0.000 *** −4.844 −3.489 0.000 ***

Population density 0.000 0.565 0.574

Per capita income −0.013 −1.039 0.301

Prop. of Roman Catholics 0.005 2.410 0.018 * 0.006 3.143 0.002 ** 0.004 2.573 0.010 **

Unemployment rate −0.038 −1.597 0.114

Psychiatrist density −0.053 −1.110 0.270 −0.041 −1.479 0.142 −0.040 −1.608 0.108

Psychotherapist density −0.001 −0.116 0.908

Gen. practitioner density 0.016 1.146 0.255

ρ 0.448 0.001 ***

Signif.: ‘***’ 0.001, ‘**’ 0.01, ‘*’ 0.05.
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different from a spatially random distribution (i.e., they
possess no spatial autocorrelation, Moran’s I: -0.060;
p= 0.761). This means that the autoregressive compo-
nent successfully captures spatial autocorrelation, which
is indicated by a significant value of rho (ρ= 0.448; LR:
14.336; p< 0.001) and non-significant LM test for re-
sidual autocorrelation. In other words, residuals are now
in compliance with the assumption of being spatially in-
dependent of each other. In addition, the resulting global
spatial lag model showed much improvement over the
final stepwise OLS model in terms of performance,
based on the AIC values (−85 for the global spatial
model versus −73 for the stepwise regression model).
Overall, the SAR model explains more than 43%
(Nagelkerke R2) in the variation of the suicide SMR.

Local spatial regression model
While the global spatial model is clearly an improvement
over the aspatial OLS model, the relationships between
the dependent and the independent variables remain sta-
tionary (i.e., constant) across the entire study area of
Austria. However, multiple studies have indicated that
such relationships are in fact non-stationary and thus
Figure 2 Local R2 values of the GWR model.
vary across the study area (e.g., [16]). Local spatial re-
gression models take such non-stationarity into account.
Thus, the final step in this analysis involved estimating a
GWR that used an adaptive, bisquare kernel function
and the significant independent variables indicated by
the SAR model.
In the GWR model, lithium level (p< 0.05) and pro-

portion of Roman Catholics (p< 0.05) show sigificant
non-stationarity, meaning that the regression coefficient
for both independent variables significantly varies across
the study area. However, the Leung et al. [22] test does
not reject the null hypotheses of stationarity for the
psychiatrist density, which indicates that this explanatory
variable seems to have a constant relationship with the
suicide SMR across the entire study area. In addition,
residuals do not show any spatial autocorrelation. Not
only does the GWR model outperform the correspond-
ing global OLS model (F= 2.363; p< 0.001), it also now
explains between about 25% to 60% of the variance in
the suicide SMR. As shown in Figure 2, an east–west
divide in the explanatory power of the GWR model is
apparent, with higher local R2 values in the east and
lower values in the western and southern portions of
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Austria. The highest local R2 values are found in the
south-east, leaving approximately 40% of the variation in
the suicide SMR unexplained.
A statistically significant negative relationship between

lithium content in drinking water and suicide mortality
can be found in the eastern portion of Austria, including
the entire provinces of Burgenland and Vienna, most of
Lower Austria and Styria, and eastern portions of Carin-
thia (Figure 3). In this entire area, the negative relation-
ship is stronger in the southern half and less
pronounced in the northern half. For example, a one
unit increase in lithium levels in drinking water in one
of the southern districts leads to a 16 fold decrease in
the suicide SMR. In contrast, the impact of the lithium
levels in drinking water on the suicide SMR in one of
the northern districts is only ¼ of that in one of the
southern districts (Figure 3).
Significant positive relationships between the propor-

tion of Roman Catholics and suicide SMR can be found
mostly for the eastern half of Austria, with the strongest
relationships in the north-east (Figure 4). Although, the
null hypotheses of spatial stationarity for the psychiatrist
density was not rejected (see above), a few districts in
the south-eastern and western portions of Austria ex-
hibit a significant negative relationship between the
psychiatrist density and the suicide SMR (Figure 5).

Discussion
Given the increasing possibilities of disease mapping due
to a growing availability of digital data in medicine, the
experiences of psychiatric epidemiology with geospatial
analyses are growing [23]. Up to now, it has been
assumed that lithium in drinking water originated from
natural sources such as lithium containing rocks [24].
Natural lithium traces in water have already been con-
sidered by Cade [1] to have the potential to influence
mental health. Since then, the mood-stabilizing effects of
lithium became widely recognised by the psychiatric
Figure 3 Significant GWR coefficients of the independent variable “lit
not significant at α=0.1).
community [25] and in the meanwhile its suicide pre-
ventive properties are well documented [26]. As a nat-
ural trace element, lithium is washed out by rain from
rock and soil and dissolves in ground water and reaches
the food-chain via the drinking water. In some geo-
graphic regions, its concentrations may reach up to
5.2 mg/l, reflecting a natural daily intake of lithium of
up to 10 mg/l [24,27]. Although, such daily doses of lith-
ium are considerably lower than those used therapeutic-
ally, it is unknown to which extent intake of natural
lithium levels may influence mental health or suicide
mortality. Only one randomised placebo-controlled
study showed favourable effects of low-dose lithium sup-
plementation (0.4 mg daily) on mood, in a small sample
of former drug users [28]. Although, the effects of thera-
peutic doses of lithium (about 70 mg dissolved lithium
per day) are well established, still only little is known
about the health effects of natural or low lithium intake
as examined in this study.
This study did not consider that lithium prescribed to

patients may accumulate via waste water in ground
water aquifers due to urinary excretion. There are sev-
eral reports pointing to the public health problem of
antibiotics leading to resistant bacteria in waste water
[29,30] as well as pharmaceuticals like carbamazepine,
ibuprofen, and biphosphenol A in finished drinking
water in Canada [31]. Similarly, acetaminophen, caffeine,
carbamazepine, codeine, and other substances are mea-
sureable in groundwater from the Los Angeles metropol-
itan area, when compared to other regions in California
[32]. In the United States, also Fluoxetine has been
detected in 4.3% of all examined ground water sites [33].
The effects of Fluoxetine and Carbamazepine concentra-
tions found in sediment and water systems were strong
enough to affect health and behavior in aquatic inverte-
brates [34,35]. It is possible that lithium, which is used
in psychiatry since more than 60 years, has accumulated
in drinking water reservoirs and thus has contributed to
hium level” (white areas indicate regression coefficients that are



Figure 4 Significant GWR coefficients of the independent variable “proportion of Roman Catholics” (white areas indicate regression
coefficients that are not significant at α=0.1).
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the nonrandom distribution of lithium in drinking water
across Austrian districts [11]. With this in mind, the
found association of lithium in drinking water and sui-
cide mortality could be a function of regional lithium
treatment rates rather than an effect of natural lithium
occurrence. To answer this question, a further examin-
ation of this hypothesis is necessary and spatial regres-
sion models are most useful in this regards. Indeed, the
authors are already in the process of preparing a project
assessing lithium prescription rates at a geographical
basis in Austria, which are available and can be
purchased.
In particular, local spatial regressions allow to further

challenge the hypotheses drawn from linear models. As
shown in this study, the associations found between lith-
ium in drinking water vary in strength by region. This
underscores the necessity to examine large areas instead
of selected regions. For example, the contradicting
results in Ohgami at al. [3] and Kabacs et al. [4], which
both examined only a random region of each country, a
prefecture in Japan and East England, might have been
biased by the selection of these regions. Such local
spatial regression models are especially informative
Figure 5 Significant GWR coefficients of the independent variable “ps
that are not significant at α=0.1).
when multiple risk factors coalesce as causes of a dis-
ease. Then, as shown here, strongest risk factors may
vary from region to region and such results may be used
to inform policy makers and prevention initiatives,
which than may be tailored to the local needs in addition
to global spatial predictors. While the suicide mortality
of the north-east of Austria is best described by the Pro-
portion of Roman Catholics, the south-east is better
described by lithium levels. The results suggest that in
the south-eastern parts of Austria the density of psychia-
trists coincidently exhibits a significant negative relation-
ship with suicide mortality with lithium levels in water,
which may be an argument for an influence of local lith-
ium prescriptions by psychiatrists on lithium levels in
drinking water.

Conclusion
The outcomes found here still need replications based
on other countries data. Also, replications in other time
periods would be informative to substantiate the possible
effects of lithium on people’s health. The limitations of
the results derived from such ecological models still
include the problem of the ecological fallacy in
ychiatrist density” (white areas indicate regression coefficients
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particular, and the Modifiable Areal Unit Problem in
general, and do not allow inferring direct causality from
such associations but are of generative and explorative
value for further basic research. The examined model of
suicide mortality is an example for further interesting
research questions. May regional patterns of violent
crime incidence such as homicides and other violent or
impulsive assaults be explained by lithium content in
drinking water as previously hypothesized [2].
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