Publications Publications of the 3DGeo Group

Publications of Prof. Dr. Bernhard Höfle, Dr. Nicole Aeschbach and former or current 3DGeo group members are listed below, sorted by year.

351 Publikationen
Erscheinungsjahr

2025

  • Wenger, A., Schreuer, A., Görlinger, S., Aeschbach, N., Fleiß, E., Kreil, A. S., … Thaller, A. (2025). Conference air travel’s relevance and ways to reduce it. Transportation Research, 138, 1–17. http://doi.org/10.1016/j.trd.2024.104488
  • Aeschbach, N., & Foshag, K. (2025). Critical literacy for climate action: digitales Lernmaterial stärkt das Erkennen, Bewerten und Handeln in der Klimakrise. Geographie heute, 374, 66–67.
  • Eberl, J., Zahs, V., Klonner, C., Höfle, B., Stempniewski, L., & Stark, A. (2025). Building damage assessment in natural disasters: a trans- and interdisciplinary approach combining domain knowledge, 3D machine learning, and crowdsourcing. Progress in Disaster Science, 26, 1–10. http://doi.org/10.1016/j.pdisas.2025.100427
  • Carniel, N., Tabernig, R., Hartl, L., & Höfle, B. (2025). Deriving activity zones of the Äußeres Hochebenkar rock glacier through boulder tracking in multitemporal UAV-LiDAR point clouds. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu25-5020
  • Durrant, A., Harcourt, W. D., Höfle, B., Weiser, H., & Tabernig, R. (2025). Linking small- and large-scale Digital Twins: a concept. In European Geosciences Union, Abstracts & presentations (S. 1). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu25-18187
  • Weiser, H., Albert, W., Tabernig, R., & Höfle, B. (2025). Virtual laser scanning of dynamic scenes (VLS-4D): a novel opportunity for advancing 3D forest monitoring. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu25-1560
  • Tabernig, R., Albert, W., Weiser, H., & Höfle, B. (2025). A hierarchical approach for near real-time 3D surface change analysis of permanent laser scanning point clouds. In Joint International Symposium on Deformation Monitoring, 6th Joint International Symposium on Deformation Monitoring (S. 1–9). Karlsruhe: KIT. http://doi.org/10.5445/IR/1000180377
  • Czerwonka-Schröder, D., Schulte, F., Albert, W., Hosseini, K., Tabernig, R., Yang, Y., … Zimmermann, K. (2025). AImon5.0: real-time monitoring of gravitational mass movements for critical infrastructure risk management with AI-assisted 3D metrology. In Joint International Symposium on Deformation Monitoring, 6th Joint International Symposium on Deformation Monitoring (S. 1–9). Karlsruhe: KIT. http://doi.org/10.5445/IR/1000179762
  • Weiser, H., & Höfle, B. (2025). Advancing vegetation monitoring with virtual laser scanning of dynamic scenes (VLS-4D): opportunities, implementations and future perspectives. In EarthArXiv (S. 1–26). [Erscheinungsort nicht ermittelbar]: Eartharxiv.org. http://doi.org/10.31223/X51Q5V
  • Czerwonka-Schröder, D., Schulte, F., Albert, W., Hosseini, K., Tabernig, R., Yang, Y., … Zimmermann, K. (2025). AImon5.0: Echtzeitüberwachung gravitativer Massenbewegungen - eine Fallstudie am Trierer Augenscheiner. Berlin ; Heidelberg: Wichmann Verlag ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036222
  • Tabernig, R., Albert, W., Weiser, H., Fritzmann, P., Anders, K., Rutzinger, M., & Höfle, B. (2025). Temporal aggregation of point clouds improves permanent laser scanning of landslides in forested areas [source code]. Heidelberg: Universität. http://doi.org/10.11588/DATA/ISB1VL
  • Tabernig, R., Albert, W., Weiser, H., Fritzmann, P., Anders, K., Rutzinger, M., & Höfle, B. (2025). Temporal aggregation of point clouds improves permanent laser scanning of landslides in forested areas. Science of Remote Sensing, 12, 1–16. http://doi.org/10.1016/j.srs.2025.100254
  • Tabernig, R., Albert, W., Weiser, H., & Höfle, B. (2025). Towards in-situ near real-time 3D environmental monitoring and geospatial point cloud analysis with open-source software. (AGIT-Conference)Shaping geospatial futures (S. 202). Salzburg: Universitätsbibliothek Salzburg. http://doi.org/10.25598/agit/2025-48
  • Puliti, S., Lines, E. R., Müllerová, J., Frey, J., Schindler, Z., Straker, A., … Astrup, R. (2025). Benchmarking tree species classification from proximally sensed laser scanning data: Introducing the FOR-species20K dataset. Methods in Ecology and Evolution, 16(4), 801–818. http://doi.org/10.1111/2041-210X.14503
  • Albert, W., Weiser, H., Tabernig, R., & Höfle, B. (2025). Wind during terrestrial laser scanning of trees: simulation-based assessment of effects on point cloud features and leaf-wood classification. In ISPRS Geospatial Week, S. Al Mansoori (Hrsg.), ISPRS Geospatial Week 2025 „Photogrammetry & Remote Sensing for a Better Tomorrow ...“ (S. 25–32). [Göttingen]: Copernicus Publications. http://doi.org/10.5194/isprs-annals-X-G-2025-25-2025
  • Meyer, J. S., Tabernig, R., & Höfle, B. (2025). Detection of honey bees (Apis mellifera) in hypertemporal LiDAR point cloud time series to extract bee activity zones and times. In ISPRS Geospatial Week, S. Al Mansoori (Hrsg.), ISPRS Geospatial Week 2025 „Photogrammetry & Remote Sensing for a Better Tomorrow ...“ (S. 583–590). [Göttingen]: Copernicus Publications. http://doi.org/10.5194/isprs-annals-X-G-2025-583-2025
  • Lindenbergh, R., Anders, K., Campos, M., Czerwonka-Schröder, D., Höfle, B., Kuschnerus, M., … Vos, S. (2025). Permanent terrestrial laser scanning for near-continuous environmental observations: systems, methods, challenges and applications. ISPRS Open Journal of Photogrammetry and Remote Sensing, 17, 1–16. http://doi.org/10.1016/j.ophoto.2025.100094

2024

  • Aeschbach, N., & Foshag, K. (2024). Transdisziplinäre Forschung zur Adaption an die Folgen des Klimawandels. HGG-Journal, 37.2022/23, 91–93.
  • Foshag, K., Ruckelshauß, T., Schlieszus, A.-K., Aeschbach, N., & Siegmund, A. (2024). The impact of structured professional development on promoting Education for Sustainable Development (ESD) in higher education: evaluation of course components and their effects on professional and personal contexts. Heidelberg Inspirations for Innovative Teaching, 5(1), 45–72. http://doi.org/10.11588/hint.2024.1.108556
  • Foshag, K., Fürle, J., Ludwig, C., Fallmann, J., Lautenbach, S., Rupp, S., … Aeschbach, N. (2024). How to assess the needs of vulnerable population groups towards heat-sensitive routing?: an evidence-based and practical approach to reducing urban heat stress. Erdkunde, 78(1), 1–33. http://doi.org/10.3112/erdkunde.2024.01.01
  • Esmorís Pena, A. M., Weiser, H., Winiwarter, L., Cabaleiro, J. C., & Höfle, B. (2024). Deep learning with simulated laser scanning data for 3D point cloud classification. ISPRS Open Journal of Photogrammetry and Remote Sensing, 215, 192–213. http://doi.org/10.1016/j.isprsjprs.2024.06.018
  • Schäfer, J., Winiwarter, L., Weiser, H., Novotný, J., Höfle, B., Schmidtlein, S., … Faßnacht, F. E. (2024). Assessing the potential of synthetic and ex situ airborne laser scanning and ground plot data to train forest biomass models. Forestry, 97(4), 512–530. http://doi.org/10.1093/forestry/cpad061
  • Vallejo Orti, M., Anders, K., Ajayi, O., Bubenzer, O., & Höfle, B. (2024). Integrating multi-user digitising actions for mapping gully outlines using a combined approach of Kalman filtering and machine learning. ISPRS Open Journal of Photogrammetry and Remote Sensing, 12, 1–15. http://doi.org/10.1016/j.ophoto.2024.100059
  • Vallejo Orti, M., Castillo, C., Zahs, V., Bubenzer, O., & Höfle, B. (2024). Classifying types of gully changes with unoccupied aircraft vehicles 3D multitemporal point clouds for training of satellite data analysis in Northwest Namibia. Earth Surface Processes and Landforms, 49(3), 1135–1155. http://doi.org/10.1002/esp.5759
  • Höfle, B., Tabernig, R., Zahs, V., Esmorís Pena, A. M., Winiwarter, L., & Weiser, H. (2024). Machine-learning based 3D point cloud classification and multitemporal change analysis with simulated laser scanning data using open source scientific software. In European Geosciences Union, EGU General Assembly 2024 (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu24-1261
  • Tabernig, R., Zahs, V., Weiser, H., & Höfle, B. (2024). Simulating 4D scenes of rockfall and landslide activity for improved 3D point cloud-based change detection using machine learning. In European Geosciences Union, EGU General Assembly 2024 (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu24-1613
  • Weiser, H., Esmorís Pena, A. M., & Höfle, B. (2024). How tree movement influences tree metrics derived from laser scanning point clouds. In European Geosciences Union, EGU General Assembly 2024 (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu24-1633
  • Weiser, H., Ulrich, V., Winiwarter, L., Esmorís Pena, A. M., & Höfle, B. (2024). Manually labeled terrestrial laser scanning point clouds of individual trees for leaf-wood separation. Heidelberg: Universität. http://doi.org/10.11588/data/UUMEDI
  • Puliti, S., Lines, E. R., Müllerová, J., Frey, J., Schindler, Z., Straker, A., … Astrup, R. (2024). Benchmarking tree species classification from proximally-sensed laser scanning data: introducing the FOR-species20K dataset. In Arxiv (S. 1–24). Ithaca, NY ; [Erscheinungsort nicht ermittelbar]: Cornell University ; Arxiv.org. http://doi.org/10.48550/arXiv.2408.06507
  • Innsbruck Summer School of Alpine Research. (2024). Sensing mountains: Innsbruck Summer School of Alpine Research 2024  -  close range sensing techniques in Alpine terrain. (M. Rutzinger, A. Eltner, C. Gevaert, B. Höfle, R. Lindenbergh, A. Mayr, … F. Pirotti, Hrsg.). Innsbruck: innsbruck university press. http://doi.org/10.15203/99106-137-3
  • Esmorís Pena, A. M., Weiser, H., Winiwarter, L., Cabaleiro, J. C., & Höfle, B. (2024). Deep learning with simulated laser scanning data for 3D point cloud classification. In EarthArXiv (S. 1–40). [Erscheinungsort nicht ermittelbar]: Eartharxiv.org. http://doi.org/10.31223/X53Q3Q
  • Zahs, V., Höfle, B., Federer, M., Weiser, H., Tabernig, R., & Anders, K. (2024). Automatic classification of surface activity types from geographic 4D monitoring combining virtual laser scanning, change analysis and machine learning. In European Geosciences Union, EGU General Assembly 2024 (S. 1–2). Göttingen: Copernicus Gesellschaft mbH.
  • Vallejo Orti, M., Anders, K., Ajali, O., Bubenzer, O., & Höfle, B. (2024). Integrating VGI contributions for gully mapping using Kalman filter and machine learning. Heidelberg: Universität. http://doi.org/10.11588/data/UHSQG0
  • Schäfer, J., Winiwarter, L., Weiser, H., Höfle, B., Schmidtlein, S., Novotný, J., … Fassnacht, F. E. (2024). CNN-based transfer learning for forest aboveground biomass prediction from ALS point cloud tomography. European Journal of Remote Sensing, 57(1), 1–18. http://doi.org/10.1080/22797254.2024.2396932

2023

  • Görlinger, S., Merrem, C., Jungmann, M., & Aeschbach, N. (2023). An evidence-based approach to accelerate flight reduction in academia. Npj Climate Action, 2(1), 1–12. http://doi.org/10.1038/s44168-023-00069-y
  • Aeschbach, N., & Aeschbach, W. (2023). Klimaphysik und Bildung für nachhaltige Entwicklung. Geographische Rundschau, 75(7/8), 65–.
  • Aeschbach, W., & Aeschbach, N. (2023). Physikalische Grundlagen des Klimawandels. In C. Nikendei, T. J. Bugaj, A. Cranz, A. Herrmann, & J. Tabatabai (Hrsg.), Heidelberger Standards der Klimamedizin (S. 3–9). Heidelberg: HeiCuMed.
  • Aeschbach, N. (2023). Navigation für zukunftsorientiertes Lernen: digitale Literalität im OECD-Lernkompass 2030. Unterricht Biologie, 47(481), 44–45.
  • Foshag, K., Vogt, K., Ebenhoch, S., & Aeschbach, N. (2023). How transdisciplinary projects can contribute to climate-friendly mobility in cities (Bd. no. 1). Heidelberg ; Heidelberg: Universität ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00032531
  • Aeschbach, N., Röck, D., Foshag, K., Engelhardt, E., Mosmann, L., & Aeschbach, W. (2023). Climate physics meets education for sustainable development: how to address wicked problems through blended learning. Heidelberg Inspirations for Innovative Teaching, 4(1), 47–71. http://doi.org/10.11588/hint.2023.1.101927
  • Brandenstein, N., Ackermann, K., Aeschbach, N., & Rummel, J. (2023). The key determinants of individual greenhouse gas emissions in Germany are mostly domain-specific. Communications Earth & Environment, 4(1), 1–18. http://doi.org/10.1038/s43247-023-01092-x
  • Foshag, K., Przybill, K., Aeschbach, N., Lautenbach, S., & Zipf, A. (2023). Challenges and solution approach for greenhouse gas emission inventories at fine spatial resolutions - the example of the Rhine-Neckar district (Bd. no. 2). Heidelberg ; Heidelberg: Universität ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00034126
  • Zahs, V., Anders, K., Kohns, J., Stark, A., & Höfle, B. (2023). Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data [Data and Source Code]. Heidelberg: Universität. http://doi.org/10.11588/data/D3WZID
  • Zahs, V., Anders, K., Kohns, J., Stark, A., & Höfle, B. (2023). Classification of structural building damage grades from multi-temporal photogrammetric point clouds using a machine learning model trained on virtual laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 122, 1–15. http://doi.org/10.1016/j.jag.2023.103406
  • Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs, V., Höfle, B., … Cicoira, A. (2023). Multisensor monitoring and data integration reveal cyclical destabilization of Äußeres Hochebenkar Rock Glacier. Earth Surface Dynamics, 11(1), 117–147. http://doi.org/10.5194/esurf-11-117-2023
  • Winiwarter, L., Anders, K., Battuvshin, G., Menzel, L., & Höfle, B. (2023). UAV laser scanning and terrestrial laser scanning point clouds of snow-on and snow-off conditions of a forest plot in the black forest at Hundseck, Baden-Württemberg, Germany [data]. Heidelberg: Universität. http://doi.org/10.11588/data/UCPTP1
  • Vallejo Orti, M., Castillo, C., Zahs, V., Bubenzer, O., & Höfle, B. (2023). Classification of types of changes in gully environments using time series forest algorithm [data]. Heidelberg: Universität. http://doi.org/10.11588/data/NSMM6P
  • Vallejo Orti, M., Negussie, K., Corral, E., Höfle, B., & Bubenzer, O. (2023). Multi Profile Curvature Analysis (MPCA) algorithm for gully detection using TanDEM X Digital elevation model. Heidelberg: Universität. http://doi.org/10.11588/data/A4KGYJ
  • Höfle, B. (2023). Measuring and understanding the world through geoinformatics using the example of natural hazards. In M. Schweiker, J. Haß, A. A. Novokhatko, & R. Halbleib (Hrsg.), Measurement and understanding in science and humanities (S. 177–190). Wiesbaden ; Wiesbaden: Springer Fachmedien Wiesbaden ; Imprint: Palgrave Macmillan. http://doi.org/10.1007/978-3-658-36974-3_14
  • Anders, K., & Höfle, B. (2023). Spatiotemporal tracking of surface processes through their change histories in dense 3D time series by implementing a time-extension on the 4D objects-by-change method. In European Geosciences Union, Abstracts & presentations (S. 1). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu23-8158
  • Anders, K., Höfle, B., Zumstein, S., Dvořák, J., Gryguc, K., Kupková, L., … Rutzinger, M. (2023). Time series analysis of 3D/4D point clouds within the open-source online course E-TRAINEE. In Virtual Geoscience Conference, VGC 2023 - Unveiling the dynamic Earth with digital methods (S. 22–23). Freiberg ; Dresden: Helmholtz-Institut Freiberg für Ressourcentechnologie ; Technische Universität Dresden.
  • Arav, R., Anders, K., Pöppl, F., Höfle, B., & Pfeifer, N. (2023). Tracing snow cover dynamics using 4D level-sets on near-continuous terrestrial laser scanning time series. In Workshop on Land Ice and Snow, Remote sensing of the cryosphere (S. 126). Bern: Universität Bern. http://doi.org/10.13140/RG.2.2.27561.06243
  • Brede, B., Kükenbrink, D., Höfle, B., Kattenborn, T., Klinger, L., Pitkänen, T., … Weiser, H. (2023). Occlusion mapping tools for point cloud quality assessment in forest laser scanning. In SilviLaser, SilviLaser 2023 (S. 1). London.
  • Potůčková, M., Albrechtová, J., Anders, K., Červená, L., Dvořák, J., Gryguc, K., … Kupková, L. (2023). E-TRAINEE: open E-learning course on time series analysis in remote sensing. In ISPRS Geospatial Week, N. El-Sheimy, A. A. Abdelbary, N. El-Bendary, & Y. Mohasseb (Hrsg.), ISPRS Geospatial Week 2023 (S. 989–996). Hannover: ISPRS. http://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023
  • Rutzinger, M., Anders, K., Bremer, M., Eltner, A., Gaevert, C., Höfle, B., … Zieher, T. (2023). Sensing mountains: learning about the observation of environmental processes in a changing world. In Virtual Geoscience Conference, VGC 2023 - Unveiling the dynamic Earth with digital methods (S. 109–110). Freiberg ; Dresden: Helmholtz-Institut Freiberg für Ressourcentechnologie ; Technische Universität Dresden.
  • Schäfer, J., Weiser, H., Winiwarter, L., Höfle, B., Schmidtlein, S., & Faßnacht, F. E. (2023). Generating synthetic laser scanning data of forests by combining forest inventory information, a tree point cloud database and an open-source laser scanning simulator. Forestry, 96(5), 653–671. http://doi.org/10.1093/forestry/cpad006
  • Schäfer, J., Winiwarter, L., Weiser, H., Novotný, J., Höfle, B., Schmidtlein, S., … Faßnacht, F. E. (2023). Potential and limitations of simulated airborne laser scanning data for forest biomass estimation. In SilviLaser, SilviLaser 2023 (S. 1). London.
  • Höfle, B., Zahs, V., Kohns, J., Meyer, F., Schorlemmer, D., Anders, K., … Evaz Zadeh, T. (2023). LOKI - Luftgestützte Observation Kritischer Infrastrukturen: Schlussbericht : Berichtszeitraum: 01.01.2020-31.03.2023. Heidelberg: Ruprecht-Karls-Universität Heidelberg - Geographisches Institut, Abteilung Geoinformatik. http://doi.org/10.2314/KXP:1885697937
  • Winiwarter, L., Anders, K., Czerwonka-Schröder, D., & Höfle, B. (2023). Full 4D change analysis of topographic point cloud time series using Kalman filtering. Earth Surface Dynamics Discussions, 11(4), 593–613. http://doi.org/10.5194/esurf-2021-103
  • Tabernig, R., Anders, K., Fritzmann, P., Weiser, H., Zahs, V., Höfle, B., & Rutzinger, M. (2023). Quantifying slope movements: tree trunk tracking using long-range stationary 4D laser scanning point clouds. In Virtual Geoscience Conference, VGC 2023 - Unveiling the dynamic Earth with digital methods (S. 114–115). Freiberg ; Dresden: Helmholtz-Institut Freiberg für Ressourcentechnologie ; Technische Universität Dresden.
  • Winiwarter, L., Anders, K., Czerwonka-Schröder, D., & Höfle, B. (2023). Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering. Earth Surface Dynamics, 11(4), 593–613. http://doi.org/10.5194/esurf-11-593-2023
  • Höfle, B., Zahs, V., Kohns, J., Meyer, F., Schorlemmer, D., Anders, K., … Evaz Zadeh, T. (2023). LOKI - Luftgestützte Observation Kritischer Infrastrukturen: Schlussbericht : Laufzeit des Vorhabens: 01.01.2020-31.12.2023. Heidelberg: Geographisches Institut, Abteilung Geoinformatik, Ruprecht-Karls-Universität Heidelberg. http://doi.org/10.5445/IR/1000170052
  • Vallejo Orti, M., Negussie, K., Corral, E., Höfle, B., & Bubenzer, O. (2023). Gully detection with inverse morphological reconstruction algorithm [data]. Heidelberg: Universität. http://doi.org/10.11588/data/PXDR4M

2022

  • Anders, K., Weise, T., Aeschbach, N., & Höfle, B. (2022). Strategies of managing urban tree vegetation: a study of cities in Taiwan. Heidelberg ; Heidelberg: Universität ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00031780
  • Frank, E., & Aeschbach, N. (2022). Taugt BNE als Schulfach? Pädagogik, 11(678), 40–41.
  • Jungmann, M., Vardag, S. N., Kutzner, F., Keppler, F., Schmidt, M., Aeschbach, N., … Butz, A. (2022). Zooming-in for climate action: hyperlocal greenhouse gas data for mitigation action? Climate Action, 1, 1–8. http://doi.org/10.1007/s44168-022-00007-4
  • Platt, U., Frank, N., Aeschbach, N., Harnisch, S., & Wurster, S. (2022). Klimawandel. Heidelberg: Universitätsbibliothek. http://doi.org/10.11588/heidok.00031288
  • Zahs, V., Winiwarter, L., Anders, K., Williams, J. G., Rutzinger, M., & Höfle, B. (2022). Correspondence-driven plane-based M3C2 for lower uncertainty in 3D topographic change quantification. ISPRS Journal of Photogrammetry and Remote Sensing, 183, 541–559. http://doi.org/10.1016/j.isprsjprs.2021.11.018
  • Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S., & de Vries, S. (2022). A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, the Netherlands. Scientific Data, 9, 1–11. http://doi.org/10.1038/s41597-022-01291-9
  • Shinoto, M., Doneus, M., Haijima, H., Weiser, H., Zahs, V., Kempf, D., … Nakamura, N. (2022). 3D point cloud from Nakadake Sanroku Kiln Site Center, Japan: sample data for the application of adaptive filtering with the AFwizard. Heidelberg: Universität. http://doi.org/10.11588/data/TJNQZG
  • Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Fassnacht, F. E., & Höfle, B. (2022). Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth System Science Data, 14(7), 2989–3012. http://doi.org/10.5194/essd-14-2989-2022
  • Herzog, M., Anders, K., Höfle, B., & Bubenzer, O. (2022). Capturing complex star dune dynamics: repeated highly accurate surveys combining multitemporal 3D topographic measurements and local wind data. Earth Surface Processes and Landforms, 47(7), 2726–2739. http://doi.org/10.1002/esp.5420
  • Anders, K., & Höfle, B. (2022). ER3DS: Emissionsreduktion in Smart Cities mit räumlicher 3D-Erfassung und Analyse. Heidelberg ; Heidelberg: Universität ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00031672
  • Weiser, H., Winiwarter, L., Schäfer, J., Faßnacht, F. E., & Höfle, B. (2022). Airborne laser scanning (ALS) point clouds with full-waveform (FWF) data of central European forest plots, Germany. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.947038
  • Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Seitz, C., Schimka, M., … Höfle, B. (2022). Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.942856
  • Höfle, B. (2022). Virtual laser scanning: simulation of synthetic 3D/4D point clouds. In Innsbruck Summer School of Alpine Research, M. Rutzinger, K. Anders, M. Bremer, A. Eltner, & B. Höfle (Hrsg.), Sensing mountains (S. 32–34). Innsbruck: innsbruck university press.
  • Innsbruck Summer School of Alpine Research. (2022). Sensing mountains: Innsbruck Summer School of Alpine Research 2022 - close range sensing techniques in alpine terrain. (M. Rutzinger, K. Anders, M. Bremer, A. Eltner, & B. Höfle, Hrsg.). Innsbruck: innsbruck university press.
  • Doneus, M., Höfle, B., Kempf, D., Daskalakis, G., & Shinoto, M. (2022). Human-in-the-loop development of spatially adaptive ground point filtering pipelines: an archaeological case study. Archaeological Prospection, 29(4), 503–524. http://doi.org/10.1002/arp.1873
  • Winiwarter, L., Anders, K., Czerwonka-Schröder, D., & Höfle, B. (2022). Virtual laser scanning of dynamic scenes created from real 4D topographic point cloud data. In ISPRS Congress, A. Yilmaz (Hrsg.), XXIV ISPRS Congress „Imaging today, foreseeing tomorrow“, Commission II (S. 79–86). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-V-2-2022-79-2022
  • Weiser, H., Searle, M., Winiwarter, L., & Höfle, B. (2022). Laserscanning simulieren mit HELIOS++: eine praktische Einführung. In FOSSGIS, FOSSGIS 2022 - Anwenderkonferenz für Freie und Open Source Software für Geoinformationssysteme, Open Data und OpenStreetMap (S. 175–176). Berlin: FOSSGIS e.V.
  • Searle, M., Weiser, H., Winiwarter, L., & Höfle, B. (2022). Simulation von Laserscanning mit AEOS, dem QGIS Plugin für HELIOS++. In FOSSGIS, FOSSGIS 2022 - Anwenderkonferenz für Freie und Open Source Software für Geoinformationssysteme, Open Data und OpenStreetMap (S. 203–204). Berlin: FOSSGIS e.V.
  • Höfle, B. (2022). Unter Beobachtung: Umweltmodelle in 4D. Ruperto Carola, 19, 42–49. http://doi.org/10.17885/heiup.ruca.2022.19.24506
  • Winiwarter, L., Esmorís Pena, A. M., Weiser, H., Anders, K., Martínez Sánchez, J., Searle, M., & Höfle, B. (2022). Virtual laser scanning with HELIOS++: a novel take on ray tracing-based simulation of topographic full-waveform 3D laser scanning. Remote Sensing of Environment, 269, 1–18. http://doi.org/10.1016/j.rse.2021.112772
  • Anders, K., Winiwarter, L., & Höfle, B. (2022). Improving change analysis from near-continuous 3D time series by considering full temporal information. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. http://doi.org/10.1109/LGRS.2022.3148920
  • Anders, K., Winiwarter, L., Schröder, D., & Höfle, B. (2022). Integration of Kalman filtering of near-continuous surface change time series into the extraction of 4D objects-by-change. In ISPRS Congress, A. Yilmaz (Hrsg.), XXIV ISPRS Congress „Imaging today, foreseeing tomorrow“, Commission II (S. 973–980). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022
  • Anders, K., Winiwarter, L., & Höfle, B. (2022). Automatic extraction and characterization of natural surface changes from near-continuous 3D times series using 4D objects-by-change and Kalman filtering. In European Geosciences Union, Abstracts & presentations (S. [1–2]). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu22-4225
  • Anders, K., Eberlein, S., & Höfle, B. (2022). Hourly terrestrial laser scanning point clouds of snow cover in the area of the Schneeferner, Zugspitze, Germany. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.941550
  • Herzog, M., Anders, K., Höfle, B., & Bubenzer, O. (2022). Capturing complex star dune dynamics: repeated highly accurate surveys combining multitemporal 3D topographic measurements and local wind data [data]. Heidelberg: Universität. http://doi.org/10.11588/data/ZAMGCL
  • Zahs, V., Winiwarter, L., Anders, K., Bremer, M., Rutzinger, M., Potůčková, M., & Höfle, B. (2022). Evaluation of UAV-borne photogrammetry and laser scanning for 3d topographic change analysis at an active rock glacier. In ISPRS Congress, A. Yilmaz (Hrsg.), XXIV ISPRS Congress „Imaging today, foreseeing tomorrow“, Commission II (S. 1109–1116). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022
  • Zahs, V., Winiwarter, L., Anders, K., Bremer, M., Rutzinger, M., Potůčková, M., & Höfle, B. (2022). Evaluation of UAV-borne photogrammetry and UAV-borne laser scanning for 3D topographic change analysis of an active rock glacier. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu22-2513
  • Winiwarter, L., Esmorís Pena, A. M., Zahs, V., Weiser, H., Searle, M., Anders, K., & Höfle, B. (2022). Virtual laser scanning using HELIOS++: applications in machine learning and forestry. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu22-8671
  • Esmorís Pena, A. M., Yermo, M., Weiser, H., Winiwarter, L., Höfle, B., & Rivera, F. F. (2022). Virtual LiDAR simulation as a high performance computing challenge: toward HPC HELIOS++. IEEE Access, 10, 105052–105073. http://doi.org/10.1109/ACCESS.2022.3211072
  • Cicoira, A., Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs, V., … Klug, C. (2022). Two destabilization phases of the Äußeres Hochebenkar Rock Glacier: revealed through 70 years of digital surface models. Copernicus Publications. http://doi.org/10.5446/60175
  • Hulskemper, D., Anders, K., Antolínez, J. A. Á., Kuschnerus, M., Höfle, B., & Lindenbergh, R. (2022). Characteriation of morphological surface activities derived from near-continuous terrestrial LIDAR time series. In Optical 3D Metrology, F. Remondino, M. Shortis, & A. Nüchter (Hrsg.), Optical 3D Metrology (O3DM) (Bd. XLVIII–2–W2–2022, S. 53–60). Hannover: ISPRS. http://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022
  • Weiser, H., Winiwarter, L., Zahs, V., Weiser, P., Anders, K., & Höfle, B. (2022). UAV-photogrammetry, UAV laser scanning and terrestrial laser scanning point clouds of the inland dune in Sandhausen, Baden-Württemberg, Germany [dataset]. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.949228
  • Anders, K., Winiwarter, L., Hulskemper, D., & Höfle, B. (2022). 4D-Änderungsobjekte zur automatischen Extraktion räumlich und zeitlich variabler Oberflächenänderungen aus kontinuierlichen 3D-Zeitserien natürlicher Szenen. Heidelberg: 3DGEO. http://doi.org/10.13140/RG.2.2.32594.22720

2021

  • Klonner, C., Usón, T., Aeschbach, N., & Höfle, B. (2021). Participatory mapping and visualization of local knowledge: an example from Eberbach, Germany. International Journal of Disaster Risk Science, 12(1), 56–71. http://doi.org/10.1007/s13753-020-00312-8
  • Aeschbach, N. (2021). Innovationsschub für das „KlimaWandelWissen“: vom analogen Lehren zum digitalen Lernen in der Geographie. Heidelberg inspirations for innovative teaching, 2, 119–145. http://doi.org/10.11588/hint.2021.1.84510
  • Weiser, H., Winiwarter, L., Anders, K., Faßnacht, F. E., & Höfle, B. (2021). Opaque voxel-based tree models for virtual laser scanning in forestry applications. Remote Sensing of Environment, 265, 1–17. http://doi.org/10.1016/j.rse.2021.112641
  • Zahs, V., Winiwarter, L., Anders, K., Williams, J. G., Rutzinger, M., Bremer, M., & Höfle, B. (2021). Correspondence-driven plane-based M3C2 for quantification of 3D topographic change with lower uncertainty [data and source code]. Heidelberg: Universität. http://doi.org/10.11588/data/TGSVUI
  • Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R. C., Vos, S., & Höfle, B. (2021). Influence of spatial and temporal resolution on time series-based coastal surface change analysis using hourly terrestrial laser scans. In ISPRS Congress, N. Paparoditis (Hrsg.), XXIV ISPRS Congress „Imaging today, foreseeing tomorrow“, Commission II (S. 137–144). [Göttingen] ; [Hannover]: [Copernicus Publications] ; [ISPRS, Leibniz University Hannover, Institute of Photogrammetry and GeoInformation (IPI)]. http://doi.org/10.5194/isprs-annals-V-2-2021-137-2021
  • Anders, K., Winiwarter, L., & Höfle, B. (2021). Improving change analysis from near-continuous 3D time series by considering full temporal information [data and source code]. Heidelberg: Universität. http://doi.org/10.11588/data/1L11SQ
  • Weiser, H., Winiwarter, L., Anders, K., Faßnacht, F. E., & Höfle, B. (2021). Opaque voxel-based tree models for virtual laser scanning in forestry applications [research data and source code]. Heidelberg: Universität. http://doi.org/10.11588/data/MZBO7T
  • Williams, J. G., Anders, K., Winiwarter, L., Zahs, V., & Höfle, B. (2021). Multi-directional change detection between point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 172, 95–113. http://doi.org/10.1016/j.isprsjprs.2020.12.002
  • Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R., Vos, S., & Höfle, B. (2021). Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes [Source Code, Validation Material and Validation Results]. Heidelberg: Universität. http://doi.org/10.11588/data/4HJHAA
  • Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R., Vos, S., & Höfle, B. (2021). Fully automatic spatiotemporal segmentation of 3D LiDAR time series for the extraction of natural surface changes. ISPRS Journal of Photogrammetry and Remote Sensing, 173, 297–308. http://doi.org/10.1016/j.isprsjprs.2021.01.015
  • Vallejo Orti, M., Winiwarter, L., Corral-Pazos-de-Provens, E., Williams, J. G., Bubenzer, O., & Höfle, B. (2021). Use of TanDEM-X and Sentinel products to derive gully activity maps in Kunene Region (Namibia) based on automatic iterative random forest approach. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 607–623. http://doi.org/10.1109/JSTARS.2020.3040284
  • Ulrich, V., Zahs, V., Anders, K., Hecht, S., & Höfle, B. (2021). Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds. Earth Surface Dynamics, 9(1), 19–28. http://doi.org/10.5194/esurf-9-19-2021
  • Winiwarter, L., Anders, K., & Höfle, B. (2021). M3C2-EP: pushing the limits of 3D topographic point cloud change detection by error propagation. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 240–258. http://doi.org/10.1016/j.isprsjprs.2021.06.011
  • Faßnacht, F. E., Schäfer, J., Weiser, H., Winiwarter, L., Krašovec, N., Latifi, H., & Höfle, B. (2021). Presenting the GeForse approach to create synthetic LiDAR data from simulated forest stands to optimize forest inventories. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu21-9197
  • Kohns, J., Zahs, V., Ullah, T., Schorlemmer, D., Nievas, C., Glock, K., … Höfle, B. (2021). Innovative methods for earthquake damage detection and classification using airborne observation of critical infrastructures (project LOKI). In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu21-2712
  • Erickson, A., Kumar, S. V., Hudson, D. l, Stamnes, S., Puttonen, E., Junttila, S., … Calders, K. (2021). Hypersurface Observation Network (Hyperon): what it is and why we need it. In American Geophysical Union, AGU Fall Meeting 2021 (S. 1). Washington, D.C.: AGU.
  • Vallejo Orti, M., Höfle, B., Bubenzer, O., & Negussie, K. (2021). Identifying and describing the impact of gully erosion in the livelihoods and properties of traditional Himba communities in Kaokoland (Namibia) as a driver of regional migration. In American Geophysical Union, AGU Fall Meeting 2021 (S. 1). Washington, D.C.: AGU. http://doi.org/10.1002/essoar.10509589.1
  • Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S., & de Vries, S. (2021). A six month high resolution 4D geospatial stationiary laser scan dataset of the Kijkduin beach dune system, The Netherlands. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.934058
  • Weiser, H., Winiwarter, L., Schäfer, J., Faßnacht, F. E., Anders, K., Esmorís Pena, A. M., & Höfle, B. (2021). Virtual laser scanning (VLS) in forestry: investigating appropriate 3D forest representations for LiDAR simulations with HELIOS++. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu21-9178
  • Zahs, V., Herfort, B., Eberl, J., Ullah, T., Anders, K., Stempniewski, L., … Höfle, B. (2021). 3D point cloud-based assessment of detailed building damage through a combination of machine learning, crowdsourcing and earthquake engineering. In European Geosciences Union, Abstracts & presentations (S. 1–2). Göttingen: Copernicus Gesellschaft mbH. http://doi.org/10.5194/egusphere-egu21-1304
  • Vallejo Orti, M., Castillo, C., Bubenzer, O., & Höfle, B. (2021). Spatio-temporal assessment of gully activity in Namibia using Sentinel-1 SAR and Tandem-X DEM products as an instrument for land degradation neutrality. In American Geophysical Union, AGU Fall Meeting 2021 (S. NH22A–04$p?). Washington, D.C.: AGU.
  • Rutzinger, M., Albrechtova, J., Anders, K., Červená, L., Höfle, B., Gryguc, K., … Potůčková, M. (2021). E-learning on time-series analysis in remote sensing and geoinformatics for understanding human-environment interactions : a concept. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037195

2020

  • Foshag, K., Aeschbach, N., Höfle, B., Winkler, R., Siegmund, A., & Aeschbach, W. (2020). Viability of public spaces in cities under increasing heat: a transdisciplinary approach. Sustainable Cities and Society, 59, 1–10. http://doi.org/10.1016/j.scs.2020.102215
  • Aeschbach, N. (2020). Eine neue Art von Nähe: Impulse für mehr Nachhaltigkeit im internationalen Wissenschaftsbetrieb. In Corona sustainability compass (S. 1). Dessau-Roßlau ; Paris ; Berlin: Corona Sustainability Compass.
  • Bruggisser, M., Hollaus, M., Winiwarter, L., Otepka, J., Wang, D., Höfle, B., & Pfeifer, N. (2020). Impacts of acquisition patterns on the robustness and accuracy of tree models derived from UAV LiDAR for forest dynamic studies (Abstract of the “3D Tree Models for Forest Dynamics”, 9th - 10th January 2020 Helsinki, Finland). Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037194
  • Ulrich, V., Williams, J. G., Zahs, V., Anders, K., Hecht, S., & Höfle, B. (2020). Disaggregating surface change mechanisms of a rock glacier using terrestrial laser scanning point clouds acquired at different time scales. Earth Surface Dynamics Discussions, 1–15. http://doi.org/10.5194/esurf-2020-55
  • Anders, K., Marx, S., Boike, J., Herfort, B., Wilcox, E. J., Langer, M., … Höfle, B. (2020). Multitemporal terrestrial laser scanning point clouds for thaw subsidence observation at Arctic permafrost monitoring sites. Earth Surface Processes and Landforms, 45(7), 1589–1600. http://doi.org/10.1002/esp.4833
  • Bechtold, S., & Höfle, B. (2020). VOSTOK - the Voxel Octree Solar Toolkit. Heidelberg: Universität. http://doi.org/10.11588/data/QNA02B
  • Westerholt, R., Lorei, H., & Höfle, B. (2020). Behavioural effects of spatially structured scoring systems in location-based serious games: a case study in the context of OpenStreetMap. ISPRS International Journal of Geo-Information, 9(2), 1–27. http://doi.org/10.3390/ijgi9020129
  • Pfeiffer, T. (Hrsg.). (2020). Der Beginn einer großen Ära: Mit- und Gegeneinander: Geist und Software. Ruperto Carola, 16, 6–15. http://doi.org/10.17885/heiup.ruca.2020.16.24184
  • Lorei, H., Höfle, B., & Westerholt, R. (2020). Spatial structure as an element of motivation in location-based games. In Wissenschaftlich-Technische Jahrestagung der DGPF, T. P. Kersten (Hrsg.), 40. Wissenschaftlich-Technische Jahrestagung der DGPF, 4.-6. März 2020 in Stuttgart (S. 290–298). München: Geschäftsstelle der DGPF. http://doi.org/10.24407/KXP:1694478424
  • Anders, K., Winiwarter, L., Mara, H., Lindenbergh, R., Vos, S., & Höfle, B. (2020). Einfluss der zeitlichen Auflösung auf die raumzeitliche Segmentierung geomorphologischer Änderungsprozesse in 3D-Punktwolken. In Wissenschaftlich-Technische Jahrestagung der DGPF, T. P. Kersten (Hrsg.), 40. Wissenschaftlich-Technische Jahrestagung der DGPF, 4.-6. März 2020 in Stuttgart (S. 312–316). München: Geschäftsstelle der DGPF. http://doi.org/10.24407/KXP:1694480429
  • Winiwarter, L., Anders, K., & Höfle, B. (2020). Herausforderungen in der Fehlerfortpflanzung von Laserscandaten für multitemporale Analysen zur verbesserten Quantifizierung des Level of Detection. In Wissenschaftlich-Technische Jahrestagung der DGPF, T. P. Kersten (Hrsg.), 40. Wissenschaftlich-Technische Jahrestagung der DGPF, 4.-6. März 2020 in Stuttgart (S. 373–380). München: Geschäftsstelle der DGPF. http://doi.org/10.24407/KXP:1694488993
  • Herfort, B., Anders, K., Marx, S., Eberlein, S., & Höfle, B. (2020). 3D micro-mapping of subsidence stations [source code and data]. Heidelberg: Universität. http://doi.org/10.11588/data/OU8YA1
  • Anders, K., Winiwarter, L., Lindenbergh, R., Williams, J. G., Vos, S., & Höfle, B. (2020). 4D objects-by-change: spatiotemporal segmentation of geomorphic surface change from LiDAR time series. ISPRS Journal of Photogrammetry and Remote Sensing, 159, 352–363. http://doi.org/10.1016/j.isprsjprs.2019.11.025
  • Rutzinger, M., Anders, K., Bremer, M., Höfle, B., Lindenbergh, R., Oude Elberink, S., … Zieher, T. (2020). Training in innovative technologies for close-range sensing in Alpine terraine. In ISPRS Congress, N. Paparoditis, C. Mallet, & F. Lafarge (Hrsg.), XXIV ISPRS Congress, Commission V and and Youth Forum (3. Aufl., S. 243–250). [Göttingen] ; [Hannover, Germany]: Copernicus Publications ; [ISPRS (International Society for Photogrammetry and Remote Sensing), c/o Leibniz University Hannover, Institute of Photogrammetry and GeoInformation]. http://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020
  • Winiwarter, L., Anders, K., Wujanz, D., & Höfle, B. (2020). Influence of ranging uncertainty of terrestrial laser scanning on change detection in topographic 3D point clouds. In ISPRS Congress, N. Paparpdotis, C. Mallet, F. Lafarge, F. Remondino, I. Toschi, & T. Fuse (Hrsg.), XXIV ISPRS Congress, Commission II (S. 789–796). [Göttingen] ; [Hannover, Germany]: Copernicus Publications ; [ISPRS (International Society for Photogrammetry and Remote Sensing), c/o Leibniz University Hannover, Institute of Photogrammetry and GeoInformation]. http://doi.org/10.5194/isprs-annals-V-2-2020-789-2020

2019

  • Aeschbach, N., & Foshag, K. (2019). Zusammen Wirken: Die große Transformation. Ruperto Carola, 15, 52–61. http://doi.org/10.17885/heiup.ruca.2019.15.24095
  • Höfle, B., Anders, K., & Winiwarter, L. (2019). 3D micro-mapping: crowdsourcing to support image and 3D point cloud analysis. Stuttgart ; Heidelberg: Institute for Photogrammetry and Geoinformatics ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037178
  • Höfle, B., Anders, K., Antonova, S., Boike, J., & Marx, S. (2019). PermaSAR: Entwicklung einer Methode zur Detektion von Subsidence in Permafrostgebieten mit D-InSAR. Heidelberg ; Heidelberg: HGG ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037179
  • Vallejo Orti, M., Negussie, K., Corral-Pazos-de-Provens, E., Höfle, B., & Bubenzer, O. (2019). Comparison of three algorithms for the evaluation of TanDEM-X data for gully detection in Krumhuk farm (Namibia). Remote Sensing, 11(11), 1–22. http://doi.org/10.3390/rs11111327
  • Antonova, S., Höfle, B., Anders, K., & Marx, S. (2019). Estimating tree height from TanDEM-X data at the northwestern Canadian treeline. Remote Sensing of Environment, 231. http://doi.org/10.1016/j.rse.2019.111251
  • Antonova, S., Beck, I., Marx, S., Anders, K., Boike, J., & Höfle, B. (2019). Vorhabensbezeichnung: PermaSAR: Entwicklung einer Methode zur Detektion von Subsidenz in Permafrostgebieten mit D-InSAR : Schlussbericht : Laufzeit des Vorhabens: 01.04.2015-31.03.2019. [Heidelberg]: Ruprecht-Karls-Universität Heidelberg. http://doi.org/10.2314/KXP:167848864X
  • Chu, H.-J., Chen, Y.-C., Ali, M. Z., & Höfle, B. (2019). Multi-parameter relief map from high-resolution DEMs: a case study of mudstone badland. International Journal of Environmental Research and Public Health, 16(7). http://doi.org/10.3390/ijerph16071109
  • Ghamisi, P., Rasti, B., Yokoya, N., Wang, Q., Höfle, B., Bruzzone, L., … Jón Atli Benediktsson. (2019). Multisource and multitemporal data fusion in remote sensing: a comprehensive review of the state of the art. IEEE Geoscience and Remote Sensing Magazine, 7(1), 6–39. http://doi.org/10.1109/MGRS.2018.2890023
  • Herzog, M., Anders, K., & Höfle, B. (2019). Multi-method investigation of star dunes in Morocco (Erg Chebbi): topography, stratigraphy and implications for OSL-sampling. Geophysical Research Abstracts, 21.
  • Höfle, B., & Anders, K. (2019). Auto3Dscapes: autonomous 3D earth observation of dynamic landscapes. HGG-Journal, 33.2018/19, 54–57.
  • Pfeiffer, J., Scaioni, M., Rutzinger, M., Adams, M., Graf, A., Sotier, B., … Wujanz, D. (2019). Terrestrial and unmanned aerial vehicle images and point clouds of the Rotmoos valley near Obergurgl, Austria with coordinates of corresponding ground control points acquired during the Innsbruck Summer School of Alpine Research [dataset]. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.898939
  • Pfeiffer, J., Wujanz, D., Zieher, T., Rutzinger, M., Scaioni, M., Höfle, B., … Hämmerle, M. (2019). Terrestrial laser scanning data of the Nesslrinna landslide close to Obergurgl, Austria acquired during the Innsbruck Summer School of Alpine Research [dataset]. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.901293
  • Ramírez-Núñez, C., Cyphers, A., Parrot, J.-F., & Höfle, B. (2019). Multidirectional interpolation of LiDAR data from Southern Veracruz, Mexico: IMPLICATIONS FOR EARLY OLMEC SUBSISTENCE. Ancient Mesoamerica, 30(3), 385–398. http://doi.org/10.1017/S0956536118000263
  • Zahs, V., Hämmerle, M., Anders, K., Hecht, S., Sailer, R., Rutzinger, M., … Höfle, B. (2019). Multi-temporal 3D point cloud-based quantification and analysis of geomorphological activity at an alpine rock glacier using airborne and terrestrial LiDAR. Permafrost and Periglacial Processes, 30(3), 222–238. http://doi.org/10.1002/ppp.2004
  • Eberlein, S., Anders, K., & Höfle, B. (2019). Kontinuierliches Schneedecken-Monitoring mittels Zeitserien von 3D-Punktwolken aus automatischem terrestrischem Laserscanning. Wissenschaftliche Resultate ..., 66–69.
  • Pfeiffer, J., Höfle, B., Hämmerle, M., Zahs, V., Rutzinger, M., Scaioni, M., … Zieher, T. (2019). Terrestrial laser scanning data of the Äußeres Hochebenkar rock glacier close to Obergurgl, Austria acquired during the Innsbruck Summer School of Alpine Research [dataset]. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.902042
  • Höfle, B. (2019). Virtual laser scanning: simulation of synthetic 3D point clouds. In M. Rutzinger & K. Heinrich (Hrsg.), Close range sensing techniques in Alpine terrain (S. 14–15). Wien: Verlag der österreichischen Akademie der Wissenschaften.
  • Höfle, B., & Klonner, C. (2019). Neogeographie einer digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). Jahrbuch ... / Heidelberger Akademie der Wissenschaften, 351–353.
  • Kumar, A., Anders, K., Winiwarter, L., & Höfle, B. (2019). Feature relevance analysis for 3D point cloud classification using deep learning. In ISPRS Geospatial Week, G. Vosselman (Hrsg.), ISPRS Geospatial Week 2019 (S. 317–324). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-IV-2-W5-373-2019
  • Anders, K., Lindenbergh, R. C., Vos, S., Mara, H., de Vries, S., & Höfle, B. (2019). High-frequency 3D geomorphic observation using hourly terrestrial laser scanning data of a sandy beach. In ISPRS Geospatial Week, G. Vosselman (Hrsg.), ISPRS Geospatial Week 2019 (S. 317–324). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019
  • Antonova, S., Anders, K., Beck, I., Boike, J., Höfle, B., & Marx, S. (2019). Digital elevation model from raw CoSSC TanDEM-X data (2015) in the area of Trail Valley Creek, Northwest Territories, Canada [dataset]. Bremerhaven, Bremen: PANGAEA - Data Publisher for Earth & Environmental Science. http://doi.org/10.1594/PANGAEA.902503

2018

  • Horn, L., & Aeschbach, N. (2018). Nachhaltiger Tourismus im deutschen Teil des Biosphärenreservats Pfälzerwald-Nordvogesen: Entwicklung eines Indikatorenkatalogs. Annales scientifiques de la réserve de biosphère transfrontalière Vosges du Nord - Pfälzerwald, 19.2017/18, 90–104.
  • Mrazek, J., Siegmund, A., Fischer, C., & Aeschbach, N. (2018). „Nachhaltigkeit lehren lernen“: innovative interdisziplinäre Lehr-Lern-Formate in der Lehramtsausbildung an Pädagogischer Hochschule und Universität Heidelberg. In W. Leal Filho (Hrsg.), Nachhaltigkeit in der Lehre (S. 327–347). Berlin, Heidelberg: Springer Spektrum. http://doi.org/10.1007/978-3-662-56386-1_20
  • Hämmerle, M., & Höfle, B. (2018). Introduction to LiDAR in geoarchaeology from a technological perspective. In C. Siart, M. Forbriger, & O. Bubenzer (Hrsg.), Digital geoarchaeology (S. 167–182). Cham: Springer. http://doi.org/10.1007/978-3-319-25316-9_11
  • Maack Raun, K. H., Pfeiffer, M., & Höfle, B. (2018). Visual detection and interpretation of cultural remnants on the Königstuhl hillside in Heidelberg using airborne and terrestrial LiDAR Data. In C. Siart, M. Forbriger, & O. Bubenzer (Hrsg.), Digital geoarchaeology (S. 201–212). Cham: Springer. http://doi.org/10.1007/978-3-319-25316-9_13
  • Anders, K., Antonova, S., Beck, I., Boike, J., Höfle, B., Langer, M., … Marx, S. (2018). Multisensor ground-based measurements of the permafrost thaw subsidence in the Trail Valley Creek, NWT, Canada, 2015-2016. Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.888566
  • Anders, K., Antonova, S., Boike, J., Gehrmann, M., Hartmann, J., Helm, V., … Sachs, T. (2018). Airborne Laser Scanning (ALS) point clouds of Trail Valley Creek, NWT, Canada (2016). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.894884
  • Ritter, S. M., Isenbeck-Schröter, M., Schröder-Ritzrau, A., Scholz, C., Rheinberger, S., Höfle, B., & Frank, N. (2018). Trace element partitioning in fluvial tufa reveals variable portions of biologically influenced calcite precipitation. Geochimica et Cosmochimica Acta, 225, 176–191. http://doi.org/10.1016/j.gca.2018.01.027
  • Klonner, C., Usón, T., Marx, S., Mocnik, F.-B., & Höfle, B. (2018). Capturing flood risk perception via sketch maps. ISPRS International Journal of Geo-Information, 7(9). http://doi.org/10.3390/ijgi7090359
  • Drews, T., Miernik, G., Anders, K., Höfle, B., Profe, J., & Bechstädt, T. (2018). Validation of fracture data recognition in rock masses by automated plane detection in 3D point clouds. International Journal of Rock Mechanics and Mining Sciences, 109, 19–31. http://doi.org/10.1016/j.ijrmms.2018.06.023
  • Hämmerle, M., & Höfle, B. (2018). Mobile low-cost 3D camera maize crop height measurements under field conditions. Precision Agriculture, 19(4), 630–647. http://doi.org/10.1007/s11119-017-9544-3
  • Herfort, B., Höfle, B., & Klonner, C. (2018). 3D micro-mapping: towards assessing the quality of crowdsourcing to support 3D point cloud analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 137, 73–83. http://doi.org/10.1016/j.isprsjprs.2018.01.009
  • Roelens, J., Höfle, B., Dondeyne, S., Orshoven, J. van, & Diels, J. (2018). Drainage ditch extraction from airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 409–420. http://doi.org/10.1016/j.isprsjprs.2018.10.014
  • Rutzinger, M., Bremer, M., Höfle, B., Hämmerle, M., Lindenbergh, R., Oude Elberink, S., … Zieher, T. (2018). Training in innovative technologies for close-range sensing in Alpine terrain. In ISPRS TC II Mid-term Symposium „Towards Photogrammetry 2020“, F. Remondino, I. Toschi, & T. Fuse (Hrsg.), ISPRS TC II Mid-term Symposium „Towards Photogrammetry 2020“ (S. 239–246). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-IV-2-239-2018
  • Boike, J., Ebenhoch, S., Höfle, B., Westermann, S., Maturilli, M., Stern, L., … Roth, K. (2018). Warming and thawing trends of permafrost at high Arctic site (Bayelva, Spitsbergen) 1998-2017. Geophysical Research Abstracts, 20, 1. http://doi.org/10.5194/essd-2017-100
  • Crommelinck, S., Höfle, B., Koeva, M. N., Yang, M. Y., & Vosselman, G. (2018). Interactive cadastral boundary delineation from UAV data. In ISPRS TC II Mid-term Symposium „Towards Photogrammetry 2020“, F. Remondino, I. Toschi, & T. Fuse (Hrsg.), ISPRS TC II Mid-term Symposium „Towards Photogrammetry 2020“ (S. 81–88). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-IV-2-81-2018
  • Höfle, B., Klonner, C., Marx, S., Usón, T., & Hölscher, M. (2018). Neogeographie einer digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). Jahrbuch ... / Heidelberger Akademie der Wissenschaften, 306–308.
  • Koma, Z., Höfle, B., Koenig, K., Lukač, N., Hämmerle, M., Kovács, J., & Folly-Ritvay, Z. (2018). Virtual laser scanning for the analysis of platform-related effects in urban tree species classification. In PFGK18, Wissenschaftlich-Technische Jahrestagung der DGPF, Münchner GI-Runde, & Deutscher Kartographie Kongress der DGfK, T. P. Kersten, E. Gülch, J. Schiewe, T. H. Kolbe, & U. Stilla (Hrsg.), Photogrammetrie - Fernerkundung - Geoinformatik - Kartographie - 2018 (S. 1). München: Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V.
  • Scaioni, M., Höfle, B., Baungarten Kersting, A. P., Barazzetti, L., Previtali, M., & Wujanz, D. (2018). Methods from information extraction from LiDAR intensity data and multispectral LiDAR technology. In ISPRS TC III Mid-term Symposium „Developments, Technologies and Applications in Remote Sensing“, J. Jiang, A. Shaker, & H. Zhang (Hrsg.), ISPRS TC III Mid-term Symposium „Developments, Technologies and Applications in Remote Sensing“ (S. 1503–1510). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-archives-XLII-3-1503-2018

2017

  • Aeschbach, N., Frischknecht, P. M., & Stauffacher, M. (2017). Umweltwissenschaften an der Universität Heidelberg und der ETH Zürich - zwei unterschiedliche Modelle. Gaia, 26(4), 349–351. http://doi.org/10.14512/gaia.26.4.12
  • Bechtold, S., Hämmerle, M., & Höfle, B. (2017). The Heidelberg LiDAR Operations Simulator HELIOS as a supporting tool for capturing and preserving cultural heritage. [Würzburg].
  • Höfle, B., Herfort, B., Kaibel, M., Eberlein, S., & Hillen, F. (2017). Citizen Science in Schulen: Entwicklung von 3D-MicroMapping zur Klassifikation von 3D-Punktwolken. [Würzburg].
  • Usón, T., Klonner, C., Marx, S., Hölscher, M., & Höfle, B. (2017). OSM critical infrastructure in Chile: analysing the relation between OSM data completeness and territorial vulnerability. [Würzburg].
  • Hämmerle, M., Anders, K., & Höfle, B. (2017). HELIOS full-waveform laser scanning simulation framework: source code, precompiled version, example files for study of understory tree height scanning and respective output. Heidelberg: Universität. http://doi.org/10.11588/data/10101
  • Chu, H.-J., Yang, M.-S., & Höfle, B. (2017). Historic low wall detection via topographic parameter images derived from fine-resolution DEM. ISPRS International Journal of Geo-Information, 6(11), 1–13. http://doi.org/10.3390/ijgi6110346
  • Lin, T.-P., Hämmerle, M., Höfle, B., & Bechtold, S. (2017). Multiscale analysis and reduction measures of urban carbon dioxide budget based on building energy consumption. Energy and Buildings, 153, 356–367. http://doi.org/10.1016/j.enbuild.2017.07.084
  • Griesbaum, L., Marx, S., & Höfle, B. (2017). Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images. Natural Hazards and Earth System Sciences Discussions, 17(7), 1191–1201. http://doi.org/10.5194/nhess-17-1191-2017
  • Ghamisi, P., Höfle, B., & Zhu, X. (2017). Hyperspectral and LiDAR data fusion using extinction profiles and deep convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 3011–3024. http://doi.org/10.1109/JSTARS.2016.2634863
  • Ghamisi, P., & Höfle, B. (2017). LiDAR data classification using extinction profiles and a composite kernel support vector machine. IEEE Geoscience and Remote Sensing Letters, 14(5), 659–663. http://doi.org/10.1109/LGRS.2017.2669304
  • Klopfer, F., Hämmerle, M., & Höfle, B. (2017). Assessing the potential of a low-cost 3-D sensor in shallow-water bathymetry. IEEE Geoscience and Remote Sensing Letters, 14(8), 1388–1392. http://doi.org/10.1109/LGRS.2017.2713991
  • Hämmerle, M., Anders, K., & Höfle, B. (2017). Simulating various terrestrial and UAV LiDAR scanning configurations for understory forest structure modelling. In ISPRS Geospatial Week, D. Li, J. Gong, & B. Yang (Hrsg.), ISPRS Geospatial Week 2017 (S. 59–65). [Göttingen]: [Copernicus Publications]. http://doi.org/10.5194/isprs-annals-IV-2-W4-59-2017
  • Marx, S., Anders, K., Antonova, S., Beck, I., Boike, J., Marsh, P., … Höfle, B. (2017). Terrestrial laser scanning for quantifying small-scale vertical movements of the ground surface in Artic permafrost regions. Earth Surface Dynamics Discussions, 1–31. http://doi.org/10.5194/esurf-2017-49
  • Höfle, B. (2017). Messen und Verstehen der Welt durch die Geoinformatik am Beispiel von Naturgefahren. In M. Schweiker, J. Haß, A. A. Novokhatko, & R. Halbleib (Hrsg.), Messen und Verstehen in der Wissenschaft (S. 207–223). Wiesbaden: Springer, Imprint: J.B. Metzler. http://doi.org/10.1007/978-3-658-18354-7_14
  • Höfle, B., Klonner, C., Marx, S., Usón, T., & Hölscher, M. (2017). Neogeographie einer digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). Jahrbuch ... / Heidelberger Akademie der Wissenschaften, 237–240.
  • Klonner, C., Eckle, M., Usón, T., & Höfle, B. (2017). Quality improvement of remotely volunteered geographic information via country-specific mapping instructions. In T. Comes (Hrsg.), Agility is coming (S. 939–947). Albi.
  • Profe, J., & Höfle, B. (2017). Detectability and geomorphometry of tufa barrages in a small forested karstic river using airborne LiDAR topo-bathymetry. Geophysical Research Abstracts, 19, 1.

2016

  • Eitel, B., Aeschbach, W., Aeschbach, N., Meier, T., Funke, J., Goeschl, T., … Siegmund, A. (2016). Heidelberg Center for the Environment (HCE) - zentrale Aktivitäten. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00022049
  • Klonner, C., Marx, S., Usón, T., Albuquerque, J. P. de, & Höfle, B. (2016). Volunteered geographic information in natural hazard analysis: a systematic literature review of current approaches with a focus on preparedness and mitigation. ISPRS International Journal of Geo-Information, 5(7). http://doi.org/10.3390/ijgi5070103
  • Crommelinck, S., & Höfle, B. (2016). Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements. Remote Sensing, 8(3). http://doi.org/10.3390/rs8030205
  • Marx, S., Hämmerle, M., Klonner, C., & Höfle, B. (2016). 3D participatory sensing with low-cost mobile devices for crop height assessment: a comparison with terrestrial laser scanning data. PLOS ONE, 11(4). http://doi.org/10.1371/journal.pone.0152839
  • Profe, J., Höfle, B., Hämmerle, M., Schröder-Ritzrau, A., & Frank, N. (2016). Characterizing tufa barrages in relation to channel bed morphology in a small karstic river by airborne LiDAR topo-bathymetry. Proceedings of the Geologists’ Association, 127(6), 664–675. http://doi.org/10.1016/j.pgeola.2016.10.004
  • Hämmerle, M., & Höfle, B. (2016). Direct derivation of maize plant and crop height from low-cost time-of-flight camera measurements. Plant Methods, 12(1), 1–13. http://doi.org/10.1186/s13007-016-0150-6
  • König, K., & Höfle, B. (2016). Full-waveform airborne laser scanning in vegetation studies: a review of point cloud and waveform features for tree species classification. Forests, 7. http://doi.org/10.3390/f7090198
  • Hämmerle, M., Schütt, F., & Höfle, B. (2016). Terrestrial and unmanned aerial system imagery for deriving photogrammetric three-dimensional point clouds and volume models of mass wasting sites. Journal of Applied Remote Sensing, 10(2). http://doi.org/10.1117/1.JRS.10.026029
  • Koma, Z., König, K., & Höfle, B. (2016). Urban tree classification using full-waveform airborne laser scanning. In L. Halounová (Hrsg.), XXIII ISPRS Congress, Commission III, 12-19 July 2016, Prague, Czech Republic (S. 185–192). http://doi.org/10.5194/isprs-annals-III-3-185-2016
  • Malinowski, R., Höfle, B., & König, K. (2016). Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 267–279. http://doi.org/10.1016/j.isprsjprs.2016.06.009
  • Eitel, J., & Höfle, B. (2016). Beyond 3-D: the new spectrum of lidar applications for earth and ecological sciences. Remote Sensing of Environment, 186, 372–392. http://doi.org/10.1016/j.rse.2016.08.018
  • Anders, K., Hämmerle, M., Miernik, G., Drews, T., Escalona, A., Townsend, C., & Höfle, B. (2016). 3D geological outcrop characterization: automatic detection of 3D planes (azimuth and DIP) using LiDAR point clouds. In L. Halounová (Hrsg.), XXIII ISPRS Congress, Commission III, 12-19 July 2016, Prague, Czech Republic (S. 105–112). http://doi.org/10.5194/isprs-annals-III-5-105-2016
  • Bechtold, S., & Höfle, B. (2016). HELIOS: a multi-purpose LiDAR simulation framework for research, planning and training of laser scanning operations with airborne, ground-based mobile stationary platforms. In L. Halounová (Hrsg.), XXIII ISPRS Congress, Commission III, 12-19 July 2016, Prague, Czech Republic (S. 161–168). http://doi.org/10.5194/isprs-annals-III-3-161-2016
  • Rutzinger, M., Höfle, B., Lindenbergh, R., Oude Elberink, S., Pirotti, F., Sailer, R., … Wujanz, D. (2016). Close-range sensing techniques in alpine terrain. In L. Halounová (Hrsg.), XXIII ISPRS Congress, Commission VI, 12-19 July 2016, Prague, Czech Republic (S. 15–22). http://doi.org/10.5194/isprs-annals-III-6-15-2016
  • Usón, T., Klonner, C., & Höfle, B. (2016). Using participatory geographic approaches for urban flood risk in Santiago de Chile: insights from a governance analysis. Environmental Science & Policy, 66, 62–72. http://doi.org/10.1016/j.envsci.2016.08.002
  • Hillen, F., Gerdes, M., Herfort, B., & Höfle, B. (2016). 3D-MicroMapping: crowdsourcing zur Klassifikation von 3D-Geodaten. AGIT, 2, 156–161.
  • Koma, Z., Székely, B., Folly-Ritvay, F., König, K., & Höfle, B. (2016). Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest. Geophysical Research Abstracts, 18, 1.
  • Höfle, B., & Marx, S. (2016). Partizipative 3D-Datenerfassung mit Smartphones in der Landwirtschaft: ein Vergleich mit Terrestrischem Laserscanning. [Bern].
  • Klonner, C., Marx, S., Usón, T., & Höfle, B. (2016). Risk awareness maps of urban flooding via OSM field papers: case study Santiago de Chile. [Rio de Janeiro].
  • Bechtold, S., Hämmerle, M., & Höfle, B. (2016). Simulated full-waveform laser scanning of outcrops for development of point cloud analysis algorithms and survey planning: an application of the HELIOS lidar simulation framework. In Virtual Geoscience Conference, S. H. Buckley, N. Naumann, T. H. Kurz, & C. H. Eide (Hrsg.), 2nd Virtual Geoscience Conference 2016 (S. 57–58). Bergen: Uni Reasearch.
  • Beck, I., Boike, J., Marx, S., Langer, M., & Höfle, B. (2016). PermaSAR - improving TanDEM-X D-InSAR techniques for the detection of small-scale vertical movements in arctic permafrost regions. In International Conference on Permafrost, A. Morgenstern & F. Günther (Hrsg.), 11th International Conference on Permafrost (S. 862). [Erscheinungsort nicht ermittelbar] ; Postdam: Bibliothek Wissenschaftspark Albert Einstein ; Bibliothek Wissenschaftspark Albert Einstein.
  • Höfle, B., Canli, E., Schmitz, E., Crommelinck, S., Hoffmeister, D., & Glade, T. (2016). 4D near real-time environmental monitoring using highly temporal LiDAR. Geophysical Research Abstracts, 18, 1.
  • Höfle, B., Klonner, C., Marx, S., Usón, T., Hölscher, M., Lukas, M., & Forbriger, M. (2016). Neogeographie einer digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). Jahrbuch ... / Heidelberger Akademie der Wissenschaften, 271–274.

2015

  • Canli, E., Thiebes, B., & Glade, T. (2015). Permanent 3D laser scanning system for alpine hillslope instabilities. (International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment)6th International Conference on Debris-flow hazards Mitigation (DFHM) (S. 1). Tsukuba.
  • Systematic review of current efforts to quantify the impacts of climate change on undernutrition. (2015). Proceedings of the National Academy of Sciences of the United States of America, 112(33). http://doi.org/10.1073/pnas.1409769112
  • Hillen, F., & Höfle, B. (2015). Geo-reCAPTCHA: crowdsourcing large amounts of geographic information from earth observation data. International Journal of Applied Earth Observation and Geoinformation, 40, 29–38. http://doi.org/10.1016/j.jag.2015.03.012
  • Hillen, F., Meynberg, O., & Höfle, B. (2015). Routing in dense human crowds using smartphone movement data and optical aerial imagery. ISPRS International Journal of Geo-Information, 4(2), 974–988. http://doi.org/10.3390/ijgi4020974
  • Höfle, B., Klonner, C., Marx, S., & Usón, T. (2015). Neogeographie einer digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). Jahrbuch der Heidelberger Akademie der Wissenschaften für ..., 259–264.
  • Klonner, C., Barron, C., Neis, P., & Höfle, B. (2015). Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments. International Journal of Digital Earth, 8(2), 153–171. http://doi.org/10.1080/17538947.2014.881427
  • König, K., Höfle, B., & Hämmerle, M. (2015). Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 112–125. http://doi.org/10.1016/j.isprsjprs.2015.03.003
  • Tomljenović, I., & Höfle, B. (2015). Building extraction from airborne laser scanning data: an analysis of the state of the art. Remote Sensing, 7(4), 3826–3862. http://doi.org/10.3390/rs70403826
  • Standortkataster für Lärmschutzanlagen mit Ertragsprognose für potentielle Photovoltaik-Anwendungen. (2015) (Bd. Heft 252). Bremen: Fachverlag NW in der Carl Schünemann Verlag GmbH.
  • Pattee, A., Höfle, B., & Seitz, C. (2015). Integrative 3D recording methods of historic architecture: Burg Hohenecken castle from southwest Germany. In Institute of Electrical and Electronics Engineers, IEEE Xplore digital library (S. 95–98). New York, NY: IEEE. http://doi.org/10.1109/DigitalHeritage.2015.7413843
  • Höfle, B., König, K., Griesbaum, L., Kiefer, A., Hämmerle, M., Eitel, J., & Koma, Z. (2015). LiDAR Vegetation Investigation and Signature Analysis System (LVISA). Geophysical Research Abstracts, 17, 1–1.
  • Hämmerle, M., Schütt, F., & Höfle, B. (2015). Terrestrial and UAS-borne imagery for quarry monitoring with low-cost structure from motion. In Wissenschaftlich-Technische Jahrestagung der DGPF, T. P. Kersten (Hrsg.), Bridging Scales - Skalenübergreifende Nah- und Fernerkundungsmethoden (S. ?). München: Deutsche Gesellschaft für Photogrammetrie, Fernerkundung und Geoinformation (DGPF) e.V.
  • Hillen, F., Ehlers, M., Meynberg, O., Höfle, B., & Reinartz, P. (2015). Fusing real-time geo-information for a raster-based least cost navigation in an SD. Hailfax.

2014

  • Comparison of kinect and terrestrial LiDAR capturing natural karst cave 3-D objects. (2014). IEEE Geoscience and Remote Sensing Letters, 11(11), 1896–1900. http://doi.org/10.1109/LGRS.2014.2313599
  • Point clouds of measurements in the Dechen Cave near Iserlohn. (2014). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.830567
  • Point cloud of a flowstone wall measured with a terrestrial laser scanner. (2014). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.830564
  • Point cloud of a stalagmite measured with a structured light camera. (2014). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.830565
  • Point cloud of a stalagmite measured with a terrestrial laser scanner. (2014). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.830566
  • Point cloud of a flowstone wall measured with a structured light camera. (2014). Bremerhaven, Bremen: PANGAEA - Publishing Network for Geoscientific and Environmental Data. http://doi.org/10.1594/PANGAEA.830561
  • Glaser, R., & Aeschbach, N. (2014). Dem Klima der Vergangenheit auf der Spur: die wechselvolle Geschichte des Klimas. In G. J. Schenk & M. Juneja (Hrsg.), Mensch. Natur. Katastrophe - von Atlantis bis heute (S. 257–259). Regensburg: Schnell + Steiner.
  • Glaser, R., & Aeschbach, N. (2014). Klimawandel. In G. J. Schenk & M. Juneja (Hrsg.), Mensch. Natur. Katastrophe - von Atlantis bis heute (S. 242–249). Regensburg: Schnell + Steiner.
  • Marx, S., Phalkey, R., Aranda-Jan, C. B., Profe, J., Sauerborn, R., & Höfle, B. (2014). Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: a systematic review of approaches. BMC Public Health, 14. http://doi.org/10.1186/1471-2458-14-1189
  • Hämmerle, M., & Höfle, B. (2014). Effects of reduced terrestrial LiDAR point density on high-resolution grain crop surface models in precision agriculture. Sensors, 14(12), 24212–24230. http://doi.org/10.3390/s141224212
  • Methods to measure potential spatial access to delivery care in low- and middle-income countries: a case study in rural Ghana. (2014). International Journal of Health Geographics, 13(25), 1–13. http://doi.org/10.1186/1476-072X-13-25
  • Dorn, H., Vetter, M., & Höfle, B. (2014). GIS-based roughness derivation for flood simulations:  a comparison of orthophotos, LiDAR and crowdsourced geodata. Remote Sensing, 6(2), 1739–1759. http://doi.org/10.3390/rs6021739
  • Potential and idiosyncrasy of object‐based image analysis for airborne Lidar‐based building detection. (2014). South-Eastern European Journal of Earth Observation and Geomatics, 3(2S), 517–520.
  • Belgiu, M., & Höfle, B. (2014). Ontology-based classification of building types detected from airborne laser scanning data. Remote Sensing, 6(2), 1347–1366. http://doi.org/10.3390/rs6021347
  • Hillen, F., & Höfle, B. (2014). Information fusion infrastructure for remote-sensing and in-situ sensor data to model people dynamics. International Journal of Image and Data Fusion, 5(1), 54–69. http://doi.org/10.1080/19479832.2013.870934
  • Höfle, B. (2014). Radiometric correction of terrestrial LiDAR point cloud data for individual maize plant detection. IEEE Geoscience and Remote Sensing Letters, 11(1), 94–98. http://doi.org/10.1109/LGRS.2013.2247022
  • Regvat, R., Hämmerle, M., Marx, S., König, K., & Höfle, B. (2014). 3D-punktbasierte Solarpotenzialanalyse für Gebäudefassaden mit freien Geodaten. Angewandte Geoinformatik, 26, 196–204.
  • Klonner, C., & Höfle, B. (2014). Fusion von 3D-Fernerkundungsdaten und nutzungsgenerierter Geoinformation aus dem Web für die Akutalisierung von 3D-Höhenmodellen in Stadtgebieten. HGG-Journal, 28.2013/14, 45–48.
  • Hillen, F., & Höfle, B. (2014). Fast-Echtzeit vs. Echtzeit: die Auswirkungen von Echtzeit-Datenintegration am Beispiel einer agentenbasierten Modellierung im GIS. Angewandte Geoinformatik, 26, 658–663.
  • Hillen, F., Höfle, B., Ehlers, M., & Reinartz, P. (2014). The potential of agent-based modelling for verification of people trajectories based on smartphone sensor data. In International Symposium of the Digital Earth, M. Hashim (Hrsg.), 8th International Symposium of the Digital Earth (ISDE8). [Bristol]: IOP Publishing. http://doi.org/10.1088/1755-1315/18/1/012052
  • Hillen, F., Ehlers, M., Höfle, B., & Reinartz, P. (2014). Real-time geo-Information fusion as one key aspect of Digital Earth. In EARSeL Symposium, B. Zagajewski & A. Sabat (Hrsg.), European remote sensing - new opportunities for science and practice (S. 1). Strasbourg ; Warsaw: European Association of Remote Sensing Laboratories (EARSeL) ; University of Warsaw, Faculty of Geography and Regional Studies.
  • Höfle, B. (2014). Radiometric correction of terrestrial LiDAR Point Cloud Data for individual maize plant detection. In Institute of Electrical and Electronics Engineers, IEEE Xplore digital library (Bd. 11, S. 94–98). New York, NY: IEEE. http://doi.org/10.1109/LGRS.2013.2247022
  • Malinowski, R., Höfle, B., König, K., Groom, G. E., Schwanghart, W., & Heckrath, G. (2014). Mapping of local-scale flooding on vegetated floodplains from radiometrically calibrated airborne laser scanning data. Geophysical Research Abstracts, 16, 1.
  • Hillen, F., Höfle, B., & Lange, N. de. (2014). Real-time geo-data integration using the example of agent-based modelling. London.

2013

  • COMNISPA II: Update of a mid-European isotope climate record, 11 ka to present. (2013). The Holocene, 23(5), 749–754. http://doi.org/10.1177/0959683612465446
  • Höfle, B. (2013). Geoinformation extraction from 3D pointclouds: current status and future perspective. In Digital Geoarchaeology 2013 (S. 11). Heidelberg: Heidelberger Akademie der Wissenschaften.
  • Panagiotopoulos, D., Höfle, B., & Rabenseifner, I. (2013). The Heidelberg Koumasa Project: a geoarchaeological approach to the history of a marginal Mediterranean landscape. In Digital Geoarchaeology 2013 (S. 20). Heidelberg: Heidelberger Akademie der Wissenschaften.
  • Forbriger, M., Siart, C., Schittek, K., Höfle, B., Bubenzer, O., & Eitel, B. (2013). Terrestrial laser scanning in geoarchaeology: capturing one of the oldest settlement places in the high Andes of southern Peru. In Digital Geoarchaeology 2013 (S. 29). Heidelberg: Heidelberger Akademie der Wissenschaften.
  • Jarmer, T., Siegmann, B., Lilienthal, H., Höfle, B., Selige, T., & Richter, N. (2013). LAI assessing of wheat stands from AISA-DUAL imagery. Nantes.
  • König, K., Höfle, B., Müller, L., Hämmerle, M., Jarmer, T., Siegmann, B., & Lilienthal, H. (2013). Mapping density of harvest residues from terrestrial laser scanning and RGB imagery. Köln: Universität Köln.
  • König, K., Kiefer, A., & Höfle, B. (2013). Laser scanning for 3D vegetation characterization: web-based infrastructure for exploration and analysis of vegetation signatures. Köln: Universität Köln.
  • Miernik, G., Profe, J., Höfle, B., Kissner, T., Bechstädt, T., & Zühlke, R. (2013). LiDAR-basierte Aufschlussanalogmodellierung und Datenextraktion für Reservoirmodelle: erste Ergebnisse. [Hamburg]: [DGMK].
  • Peters, R., & Höfle, B. (2013). Solarpotenzialanalyse an vertikalen Strukturen mit ArcGIS und GRASS GIS am Beispiel von Lärmschutzwänden. Heidelberg.
  • Siegmann, B., Jarmer, T., Lilienthal, H., Selige, T., Höfle, B., & Richter, N. (2013). Comparison of narrow band vegetation indices and empirical models from hyperspectral remote sensing data for the assessment of wheat nitrogen concentration. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037114
  • Jarmer, T., Siegmann, B., Lilienthal, H., Höfle, B., Selige, T., & Richter, N. (2013). LAI assessing of wheat stands from AISA-DUAL imagery. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037115
  • Peters, R., & Höfle, B. (2013). Solarpotenzialanalyse an vertikalen Strukturen mit ArcGIS und GRASS GIS am Beispiel von Lärmschutzwänden. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037116
  • Miernik, G., Profe, J., Höfle, B., Kissner, T., Emmerich, A., Bechstädt, T., & Zühlke, R. (2013). Modelling fractured reservoirs from LiDAR derived digital outcrop models (DOMs). Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037118
  • Hillen, F., Ehlers, M., Reinartz, P., & Höfle, B. (2013). Fusion of real-time remote sensing data and in-situ sensor data to increase situational awareness in digital earth applications. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037122
  • Helbich, M., & Höfle, B. (2013). Verbesserung der Vorhersagegenauigkeit von urbanen hedonischen Immobilienpreismodellen durch Laserscanning. Heidelberg ; Heidelberg: HGG ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037123
  • Bergmann, M., & Höfle, B. (2013). GIS-gestützte Standortplanung von Windenergieanlagen mit freien und amtlichen Geodaten. Berlin, Heidelberg ; Heidelberg: Wichmann ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037126
  • Höfle, B., Griesbaum, L., & Forbriger, M. (2013). GIS-based detection of gullies in terrestrial LiDAR data of the Cerro Llamoca Peatland (Peru). Remote Sensing, 5(11), 5851–5870. http://doi.org/10.3390/rs5115851
  • Profe, J., Forbriger, M., & Höfle, B. (2013). Terrestrisches Laserscanning für geoarchäologische Fragestellungen in Koumasa/Kreta. Heidelberg: Institute of Geography, University of Heidelberg.
  • Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification. (2013). Earth Surface Processes and Landforms, 38, 1135–1147. http://doi.org/10.1002/esp.3394
  • Hillen, F., & Höfle, B. (2013). Webbasierte Sichtbarkeitsanalyse mit Laserscanningdaten:  = Web-based visibility analysis with LiDAR data. GIS.science, 26(1), 1–7.
  • Boosting the predictive accuracy of urban hedonic house price models through airborne laser scanning. (2013). Computers, Environment and Urban Systems, 39, 81–92.
  • Helbich, M., Jochem, A., Mücke, W., & Höfle, B. (2013). Boosting the predictive accuracy of urban hedonic house price models through airborne laser scanning. Computers, Environment and Urban Systems, 39, 81–92. http://doi.org/10.1016/j.compenvurbsys.2013.01.001
  • König, K., Kiefer, A., & Höfle, B. (2013). Webbasierte Visualisierung und objektbasierte Analyse von 3D-Geoinformation aus Laserpunktwolken. GIS. science, 26(2), 70–76.
  • Hämmerle, M., Forbriger, M., & Höfle, B. (2013). Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning. Geophysical Research Abstracts, 15, 1.
  • Dorn, H., Vetter, M., & Höfle, B. (2013). GIS-basierte Rauigkeitsableitung für Hochwassersimulationen:: eine Sensitivitätsanalyse mit Orthophotos, Laserscanning und freien Geodaten. Tübingen.
  • Hämmerle, M., Forbriger, M., & Höfle, B. (2013). Multitemporale 3D-Erfassung und GIS-Analyse fluvial-geomorphologischer Prozesse mit terrestrischem Laserscanning. Heidelberg.

2012

  • Höfle, B. (2012). Nachhaltige Stromerzeugung: Geoinformationen optimieren Solaranlagen. Ruperto Carola, (1), 44–46.
  • Schütt, F., & Höfle, B. (2012). Validierung und Modellierung von Pflanzenparametern mit terrestrischen Laserscannerdaten. Heidelberg: Institute of Geography, University of Heidelberg.
  • Höfle, B., Hollaus, M., & Hagenauer, J. C. (2012). Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 67(1), 134–147. http://doi.org/10.1016/j.isprsjprs.2011.12.003
  • Jochem, A., Höfle, B., & Zipf, A. (2012). Area-wide roof plane segmentation in airborne LiDAR point clouds. Computers, Environment and Urban Systems, 36(1), 54–64. http://doi.org/10.1016/j.compenvurbsys.2011.05.001
  • Höfle, B., & Jochem, A. (2012). 3D-Laserscanning-Punktwolken und GIS: aktuelle Entwicklungen = 3D laser scanning point clouds and GIS : current developments. GIS.science, 25(2), 91–100.
  • Rutzinger, M., Höfle, B., & Kringer, K. (2012). Accuracy of automatically extracted geomorphological breaklines from airborne LiDAR curvature images. Geografiska Annaler, 94(1), 33–42.
  • High-resolution terrestrial laser scanning (TLS) on cushion peatlands: a case study from the Peruvian Andes. (2012). Geophysical Research Abstracts, 14, 11485.
  • Lilienthal, H., Richter, N., Siegmann, B., Jarmer, T., Selige, T., & Höfle, B. (2012). Erzeugung von Bilddaten aus bodengestützten hyperspektralen Feldmessungen. In Wissenschaftlich-Technische Jahrestagung der DGPF, E. Seyfert (Hrsg.), Erdblicke - Perspektiven für die Geowissenschaften (S. 323). Münster: Geschäftsstelle der DGPF.
  • Siegmann, B., Jarmer, T., Lilienthal, H., Richter, N., Selige, T., & Höfle, B. (2012). Die Ableitung des Blattflächenindex von Weizenbeständen aus abbildenden Hyperspektraldaten. In Wissenschaftlich-Technische Jahrestagung der DGPF, E. Seyfert (Hrsg.), Erdblicke - Perspektiven für die Geowissenschaften (S. 339). Münster: Geschäftsstelle der DGPF.
  • Lilienthal, H., Richter, N., Jarmer, T., Siegmann, B., Selige, T., & Höfle, B. (2012). Simulation landwirtschaftlicher Online-Sensorik mit Hilfe abbildender Hyperspektraldaten. In M. Zude, M. Weis, & A. Ruckelshausen, 17. und 18. Workshop Computer-Bildanalyse in der Landwirtschaft (S. 64–72). Potsdam-Bornim: Leibniz-Institut für Agrartechnik.
  • Hillen, F., & Höfle, B. (2012). Interoperable web-based 3D analysis of laser scanning data for location-based mobile applications. Aachen ; Heidelberg: Shaker ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037042
  • Höfle, B., Forbriger, M., Siart, C., & Nowaczinski, E. (2012). Fusion of terrestrial LiDAR and tomographic mapping data for 3D karst landform investigation. Munich ; Heidelberg: EGU - European Geosciences Union ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037051
  • Höfle, B., & Wagener, O. (2012). Burgen in der Landschaft: Inszenierung und Entzifferung anhand neuer Methoden. Frankfurt am Main ; Heidelberg: Lang ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037055
  • Forbriger, M., Schittek, K., Höfle, B., Siart, C., & Eitel, B. (2012). Multi-method investigation of cushion peatlands (bofedales) on the Peruvian Altiplano: high-resolution terrestrial archives for palaeoenvironmental reconstructions. Munich ; Heidelberg: EGU - European Geosciences Union ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037052

2011

  • Rutzinger, M., & Höfle, B. (2011). Digital terrain models from airborne laser scanning for the automatic extraction of natural and anthropogenic linear structures. In M. J. Smith, Geomorphological mapping (S. 475–488). Amsterdam ; New York: Elsevier. http://doi.org/10.1016/B978-0-444-53446-0.00018-5
  • Vetter, M., & Höfle, B. (2011). Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data: a voxel based approach. In ISPRS Workshop Laser Scanning (S. ?). [S.l.]: ISPRS.
  • Jochem, A., Höfle, B., & Rutzinger, M. (2011). Extraction of vertical walls from mobile laser scanning data for solar potential assessment. Remote Sensing, 3(4), 650–667. http://doi.org/10.3390/rs3040650
  • Roughness mapping on various vertical scales based on full-waveform airborne laser scanning data. (2011). Remote Sensing, 3(3), 503–523. http://doi.org/10.3390/rs3030503
  • Estimation of aboveground biomass in alpine forests: a semi-empirical approach considering canopy transparency derived from airborne LiDAR data. (2011). Sensors, 11(1), 278–295. http://doi.org/10.3390/s110100278
  • Strobl, J. (Hrsg.). (2011). Geodateninfrastrukturen im historisch-geographischen Kontext: buddhistische Steinschriften in der Provinz Sichuan, China. Angewandte Geoinformatik 2011 (S. 740–749). Berlin ; Offenbach: Wichmann.
  • Geertman, S. (Hrsg.). (2011). 3D-sutras: a web based atlas of laser scanned Buddhist stone inscriptions in China. Advancing geoinformation science for a changing world (S. ?). [S.l.]: Association of Geographic Information Laboratories for Europe.
  • Forbriger, M., Siart, C., Schittek, K., Höfle, B., Bubenzer, O., & Eitel, B. (2011). Terrestrial laser scanning in geoarchaeology: capturing one of the oldest settlement places in the high Andes of southern Peru. Geophysical Research Abstracts, 13.
  • Höfle, B., & Rutzinger, M. (2011). Topographic airborne LiDAR in geomorphology: a technological perspective. Zeitschrift Für Geomorphologie, 55, 1–29. http://doi.org/10.1127/0372-8854/2011/0055S2-0043
  • Vetter, M., Höfle, B., Mandlburger, G., & Rutzinger, M. (2011). Estimating changes of riverine landscapes and riverbeds by using airborne LiDAR data and river cross-sections. Zeitschrift Für Geomorphologie, 55, 51–65. http://doi.org/10.1127/0372-8854/2011/0055S2-0045
  • Rutzinger, M., Höfle, B., Oude Elberink, S., & Vosselman, G. (2011). Feasibility of facade footprint extraction from mobile laser scanning data:  = Möglichkeiten der Extraktion von Fassadengrundlinien aus mobilen Laserscannerdaten. Photogrammetrie, Fernerkundung, Geoinformation, (3), 97–107. http://doi.org/10.1127/1432-8364/2011/0075
  • Fritzmann, P., Höfle, B., Vetter, M., Sailer, R., Stötter, J., & Bollmann, E. (2011). Surface classification based on multi-temporal airborne LiDAR intensity data in high mountain environments: a case study from Hintereisferner, Austria. Zeitschrift Für Geomorphologie, 55, 105–126. http://doi.org/10.1127/0372-8854/2011/0055S2-0048
  • Forbriger, M., Schittek, K., Siart, C., & Höfle, B. (2011). New approaches in vegetation mapping: use of terrestrial laser scanning on high Andean cushion peatlands. Munich ; Heidelberg: EGU - European Geosciences Union ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037025
  • Lanig, S., Schilling, A., Auer, M., Höfle, B., & Zipf, A. (2011). Interoperable integration of high precision 3D laser data and large scale geoanalysis in a SDI for Sutra inscriptions in Sichuan (China). Heidelberg ; Heidelberg: AKA, Akad. Verlagsges. ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037027

2010

  • Aeschbach, N. (2010). COMNISPA - ein präzise datiertes Klima-Archiv aus holozänen alpinen Stalagmiten.
  • Mandlburger, G., & Höfle, B. (2010). Verwaltung landesweiter Full Waveform Airborne Laser Scanning Daten. In Wissenschaftlich-Technische Jahrestagung der DGPF, G. Kohlhofer & M. Franzen (Hrsg.), Vorträge Dreiländertagung OVG, DGPF und SGPF (S. 356–365). Münster: Geschäftsstelle der DGPF.
  • Jochem, A., & Höfle, B. (2010). Estimation of aboveground biomass using airborne LiDAR data. In SilviLaser, B. Koch (Hrsg.), Proceedings Silvilaser 2010 (S. 161–169). Freiburg: FeLis.
  • Höfle, B., & Hollaus, M. (2010). Urban vegetation detection using high density full-waveform airborne LiDAR data: combination of object-based image and point cloud analysis. In Papers accepted on the basis of peer-reviewed abstracts (S. 281–186). Lemmer: GITC.
  • Aubrecht, C., Höfle, B., Hollaus, M., Köstl, M., Steinnocher, K., & Wagner, W. (2010). Vertical roughness mapping: ALS based classification of the vertical vegetation structure in forested areas. Lemmer ; Heidelberg: GITC ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037019
  • Rutzinger, M., Rüf, B., Höfle, B., & Vetter, M. (2010). Change detection of building footprints from airborne laser scanning acquired in short time intervals. Lemmer ; Heidelberg: GITC ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037001
  • Podobnikar, T., Székely, B., Hollaus, M., Roncat, A., Dorninger, P., Briese, C., … Pfeifer, N. (2010). Vsestranska uporaba aero-laserskega skeniranja za ugotavljanje nevarnosti zaradi naravnih nesreč na območju Alp. Ljubljana ; Heidelberg: ZRC SAZU, Založba ZRC ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037004
  • Mandlburger, G., Briese, C., Otepka, J., Höfle, B., & Pfeifer, N. (2010). Verwaltung landesweiter Full Waveform Airborne Laser Scanning Daten. Münster ; Heidelberg: Geschäftsstelle der DGPF ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037005
  • Hollaus, M., & Höfle, B. (2010). Terrain roughness parameters from full-waveform airborne LiDAR data. Lemmer ; Heidelberg: GITC ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037017

2009

  • Wagner, W., Hollaus, M., & Höfle, B. (2009). Terrain characterization and vegetation structural analysis with full-waveform airborne laser scanners. Red Hook, NY ; Heidelberg: Curran ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036938
  • Jochem, A., Höfle, B., Hollaus, M., & Rutzinger, M. (2009). Object detection in airborne LIDAR data for improved solar radiation modeling in urban areas. Beijing ; Heidelberg: ISPRS ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036965
  • Jochem, A., Höfle, B., Rutzinger, M., & Pfeifer, N. (2009). Automatic roof plane detection and analysis in airborne lidar point clouds for solar potential assessment. Sensors, 9(7), 5241–5262. http://doi.org/10.3390/s90705241
  • Vetter, M., Höfle, B., & Rutzinger, M. (2009). Water classification using 3D airborne laser scanning point clouds. VGI, 97(2), 227–238.
  • Mandlburger, G., Höfle, B., Briese, C., Ressl, C., Otepka, J., Hollaus, M., & Pfeifer, N. (2009). Topographische Daten aus Laserscanning als Grundlage für Hydrologie und Wasserwirtschaft. Österreichische Wasser- und Abfallwirtschaft, 61(7/8), 89–97. http://doi.org/10.1007/s00506-009-0095-3
  • Mandlburger, G., Hauer, C., Höfle, B., Habersack, H., & Pfeifer, N. (2009). Optimisation of LiDAR derived terrain models for river flow modelling. Hydrology and Earth System Sciences, 13(8), 1453–1466. http://doi.org/10.5194/hess-13-1453-2009
  • Hollaus, M., Dorigo, W., Wagner, W., Schadauer, K., Höfle, B., & Maier, B. (2009). Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data. International Journal of Remote Sensing, 30(19), 5159–5175. http://doi.org/10.1080/01431160903022894
  • Höfle, B., Vetter, M., Pfeifer, N., Mandlburger, G., & Stötter, J. (2009). Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surface Processes and Landforms, 34(12), 1635–1649. http://doi.org/10.1002/esp.1853
  • Höfle, B., Mücke, W., Dutter, M., Rutzinger, M., & Dorninger, P. (2009). Detection of building regions using airborne LiDAR: a new combination of raster and point cloud based GIS methods. In A. Car (Hrsg.), Geospatial Crossroads GI_Forum ’09 (S. 66–75). Heidelberg: Wichmann.
  • Geist, T., Höfle, B., Rutzinger, M., Pfeifer, N., & Stötter, J. (2009). Laser scanning - a paradigm change in topographic data acquisition for natural hazard management. In E. Veulliet, J. Stötter, & H. Weck-Hannemann (Hrsg.), Sustainable Natural Hazard Management in Alpine Environments (S. 309–344). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-03229-5_11
  • Höfle, B., Mandlburger, G., Pfeifer, N., Rutzinger, M., & Bell, R. (2009). Potential of airborne LiDAR in geomorphology: a technological perspective. Geophysical Research Abstracts, 11, 1.
  • Sailer, R., Höfle, B., Bollmann, E., Vetter, M., Stötter, J., Pfeifer, N., … Geist, T. (2009). Multitemporal error analysis of LiDAR data for geomorphological feature detection. Geophysical Research Abstracts, 11, 1.
  • Pfeifer, N., Briese, C., Mandlburger, G., Höfle, B., & Ressl, C. (2009). State of the art in high accuracy high detail DTMs derived from ALS. Geophysical Research Abstracts, 11, 1.
  • Vetter, M., Höfle, B., Pfeifer, N., Rutzinger, M., Sailer, R., Stötter, J., & Geist, T. (2009). The Hintereisferner: eight years of experience in method development for glacier monitoring with airborne LiDAR. Geophysical Research Abstracts, 11, 1.
  • Vetter, M., Höfle, B., Pfeifer, N., Rutzinger, M., & Stötter, J. (2009). On the use of airborne LiDAR for braided river monitoring and water surface delineation. Geophysical Research Abstracts, 11, 1.
  • Höfle, B., Hollaus, M., Mücke, W., & Pfeifer, N. (2009). Aktueller Stand und Potenzial von Full-waveform Laserscanning in der Geomorphologie: Kurzfassung des Vortrags bei „Deutscher Geographentag 2009, Wien“ Fachsitzung FS 62: Möglichkeiten und Grenzen von Laserscanning in der Geomorphologie. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036962
  • Höfle, B., Sailer, R., Vetter, M., Rutzinger, M., & Pfeifer, N. (2009). Glacier surface feature detection and classification from airborne LiDAR data. Geophysical Research Abstracts, 11, 1.
  • Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., … Regner, B. (2009). Tree species classification based on full-waveform airborne laser scanning data. College Station, Texas, USA ; Heidelberg: SILVILASER ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036973

2008

  • Vetter, M., Höfle, B., Mandlburger, G., & Rutzinger, M. (2008). Ableitung von Flusssohlenmodellen aus Flussquerprofilen und Integration in Airborne Laserscanning Geländemodelle mit GRASS GISS. In J. Strobl, T. Blaschke, & G. Griesebner (Hrsg.), Angewandte Geoinformatik 2008 (S. 382–391). Heidelberg: Wichmann.
  • Rutzinger, M., Höfle, B., & Pfeifer, N. (2008). Object detection in airborne laser scanning data: an integrative approach on object-based image and point cloud analysis. In T. Blaschke (Hrsg.), Object-based image analysis (S. 645–662). Berlin ; Heidelberg: Springer. http://doi.org/10.1007/978-3-540-77058-9_35
  • Rutzinger, M., Höfle, B., Hollaus, M., & Pfeifer, N. (2008). Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors, 8(8), 4505–4528. http://doi.org/10.3390/s8084505
  • Pfeifer, N., Höfle, B., Briese, C., Rutzinger, M., & Haring, A. (2008). Analysis of the backscattered energy in terrestrial laser scanning data. In J. Chen & International Society for Photogrammetry and Remote Sensing (Hrsg.), Analysis of the backscattered energy in terrestrial laser scanning dataProceedings ; Pt. B5-2 (S. 1045–1051). Lemmer: [Verlag nicht ermittelbar].
  • Höfle, B., Hollaus, M., Lehner, H., Pfeifer, N., & Wagner, W. (2008). Area-based parameterization of forest structure using full-waveform airborne laser scanning data. In SilviLaser, R. Hill, J. Rosette, & J. Suárez-Minguez (Hrsg.), Proceedings of SilviLaser 2008 (S. 227–235). Edinburgh, UK: Heriot-Watt University.
  • Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M., & Ulrich, A. (2008). Calibration of full-waveform airborne laser scanning data for object classification. In Laser radar technology and applications, Laser radar technology and applications (S. 1–8). Bellingham, Wash.: SPIE. http://doi.org/10.1117/12.781086
  • Höfle, B., Pfeifer, N., Ressl, C., Rutzinger, M., & Vetter, M. (2008). Water surface mapping using airborne laser scanning elevation and signal amplitude data$B. Höfle, N. Pfeifer, C. Ressl, M. Rutzinger, and  M. Vetter. Geophysical Research Abstracts, 10, 1–2.

2007

  • Höfle, B. (2007). Detection and utilization of the information potential of airborne laser scanning point cloud and intensity data by developing a management and analysis system. Heidelberg.
  • Rutzinger, M., Höfle, B., & Pfeifer, N. (2007). Detection of high urban vegetation with airborne laser scanning data. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036924
  • Höfle, B., & Pfeifer, N. (2007). Correction of laser scanning intensity data: data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 62(6), 415–433. http://doi.org/10.1016/j.isprsjprs.2007.05.008
  • Höfle, B., Geist, T., Rutzinger, M., & Pfeifer, N. (2007). Glacier surface segmentation using airborne laser scanning point cloud and intensity data. In Laser Scanning and SilviLaser, P. Rönnholm, H. Hyyppä, & J. Hyyppä (Hrsg.), Proceedings of the ISPRS Workshop „Laser Scanning 2007 and SilviLaser 2007“ (S. 195–200). [Erscheinungsort nicht ermittelbar]: ISPRS Working Groups.
  • Kodde, M. P., Pfeifer, N., Gorte, B., Geist, T., & Höfle, B. (2007). Automatic glacier surface analysis from airborne laser scanning. [Wechselnde Verlagsorte] ; Heidelberg: ISPRS ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036925

2006

  • Rutzinger, M., Höfle, B., Pfeifer, N., Geist, T., & Stötter, J. (2006). Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(4/C42), 1–5.
  • Edelmaier, F., Höfle, B., & Heller, A. (2006). Konzepte zur 3D Visualisierung von Laserscanner-Daten mit VTK und Python. Berlin ; Heidelberg: Wichmann ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036923
  • Geist, T., Höfle, B., Kodde, M. P., Kodde, S., Karimi, F., Lindenbergh, R., & Pfeifer, N. (2006). Experimente am Hintereisferner mit dem terrestrischen Laserscanner Ilris 3D 25. und 26. Juli 2006: technical Report. Innsbruck ; Heidelberg: Institute of Geography, University Innsbruck ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036922
  • Höfle, B., Rutzinger, M., Geist, T., & Stötter, J. (2006). Using airborne laser scanning data in urban data management: set up of a flexible information system with open source components. Heidelberg. http://doi.org/10.11588/heidok.00036921

2005

  • Aeschbach, N. (2005). Stalagmiten aus der Spannagel-Höhle bei Hintertux: (Tirol, Österreich); Archive für das Klima der Alpen im Holozän.
  • Höfle, B., Geist, T., Heller, A., & Stötter, J. (2005). Entwicklung eines Informationssystems für Laserscannerdaten mit OpenSource-Software. Heidelberg ; Heidelberg: Wichmann ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036823
  • Höfle, B. (2005). Entwicklung eines Informationssystems für Laserscannerdaten mit open source Software. Heidelberg: Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00037198
  • Geist, T., Höfle, B., Rutzinger, M., & Stötter, J. (2005). Der Einsatz von flugzeuggestützten Laserscanner Daten für geowissenschaftliche Untersuchungen in Gebirgsräumen. Stuttgart ; Heidelberg: Schweizerbart ; Universitätsbibliothek Heidelberg. http://doi.org/10.11588/heidok.00036804

2004

  • Geist, T., Höfle, B., Rutzinger, M., & Stötter, J. (2004). Analysis of laser scanner data with remote sensing techniques for determining surface characteristics. In International Conference on „Laser-Scanners for Forest and Landscape Assessment“, Laser-scanners for forest and landscape assessment (S. 297). Freiburg i.Br. ; Freiburg: Inst. f. Forest Growth ; Univ., Inst. for Forest Growth, Dep. of Remote Sensing and Landscape Information Systems.