[293] Anders, K., Eberlein, S. & Höfle, B. (2022): Hourly Terrestrial Laser Scanning Point Clouds of Snow Cover in the Area of the Schneeferner, Zugspitze, Germany. PANGAEA. DOI: 10.1594/PANGAEA.941550. | |
[292] Anders, K. & Höfle, B. (2022): ER3DS - Emissionsreduktion in Smart Cities mit räumlicher 3D-Erfassung und Analyse. Final Project Report, No. FKZ 01DO19001, Heidelberg University, pp. 1-18. DOI: 10.11588/heidok.00031672. | |
[291] Anders, K., Weise, T., Aeschbach, N. & Höfle, B. (2022): Strategies of Managing Urban Tree Vegetation: A Study of Cities in Taiwan. Technical Report, Heidelberg University, pp. 1-30. DOI: 10.11588/heidok.00031780. | |
[290] Anders, K., Winiwarter, L. & Höfle, B. (2022): Improving Change Analysis From Near-Continuous 3D Time Series by Considering Full Temporal Information. IEEE Geoscience and Remote Sensing Letters. Vol. 19, pp. 1-5. | |
[289] Anders, K., Winiwarter, L. & Höfle, B. (2022): Automatic Extraction and Characterization of Natural Surface Changes from Near-Continuous 3D Time Series using 4D Objects-By-Change and Kalman Filtering. In: EGU General Assembly 2022. Vol. EGU22, pp. 1-2. | |
[288] Anders, K., Winiwarter, L., Hulskemper, D. & Höfle, B. (2022): 4D-Änderungsobjekte zur automatischen Extraktion räumlich und zeitlich variabler Oberflächenänderungen aus kontinuierlichen 3D-Zeitserien natürlicher Szenen. In: 41. Wissenschaftlich-Technische Jahrestagung der DGPF. | |
[287] Anders, K., Winiwarter, L., Schröder, D. & Höfle, B. (2022): Integration of Kalman Filtering of Near-Continuous Surface Change Time Series into the Extraction of 4D Objects-by-Change. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLIII-B2-2022, pp. 973-980. | |
[286] Cicoira, A., Hartl, L., Zieher, T., Bremer, M., Stocker-Waldhuber, M., Zahs, V., Höfle, B. & Klug, C. (2022): Two destabilization phases of the Äußeres Hochebenkar Rock Glacier: Revealed through 70 years of digital surface models. Copernicus Publications. DOI: 10.5446/60175. | |
[285] Doneus, M., Höfle, B., Kempf, D., Daskalakis, G. & Shinoto, M. (2022): Human-in-the-loop development of spatially adaptive ground point filtering pipelines — An archaeological case study. Archaeological Prospection. Vol. 29 (4), pp. 503-524. | |
[284] Esmorís, A.M., Yermo, M., Weiser, H., Winiwarter, L., Höfle, B. & Rivera, F.F. (2022): Virtual LiDAR Simulation as a High Performance Computing Challenge: Toward HPC HELIOS++. IEEE Access. Vol. 10, pp. 105052-105073. | |
[283] Herzog, M., Anders, K., Höfle, B. & Bubenzer, O. (2022): Capturing complex star dune dynamics—repeated highly accurate surveys combining multitemporal 3D topographic measurements and local wind data. Earth Surface Processes and Landforms. Vol. 47 (11), pp. 2726-2739. | |
[282] Höfle, B. (2022): Unter Beobachtung - Umweltmodelle in 4D. Ruperto Carola. Vol. 19, pp. 43-49. DOI: 10.17885/heiup.ruca.2022.19.24506. | |
[281] Höfle, B. (2022): Virtual Laser Scanning - Simulation of Synthetic 3D/4D Point Clouds. In: Sensing Mountains: Innsbruck Summer School of Alpine Research 2022 – Close Range Sensing Techniques in Alpine Terrain. Vol. 2022, pp. 32-34. | |
[280] Hulskemper, D., Anders, K., Antolínez, J.A. Á., Kuschnerus, M., Höfle, B. & Lindenbergh, R. (2022): Characterization of Morphological Surface Activities derived from Near-Continuous Terrestrial LiDAR Time Series. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLVIII-2/W2-2022, pp. 53-60. | |
[279] Rutzinger, M., Anders, K., Bremer, M., Eltner, A., Höfle, B., Lindenbergh, R., Mayr, A., Oude Elberink, S., Pirotti, F., Tolksdorf, H. & Zieher, T. (2022): Sensing Mountains: Innsbruck Summer School of Alpine Research 2022 – Close Range Sensing Techniques in Alpine Terrain. pp. 1-130. ISBN: 978-3-99106-081-9. | |
[278] Searle, M., Weiser, H., Winiwarter, L. & Höfle, B. (2022): Simulation von Laserscanning mit AEOS, dem QGIS Plugin für HELIOS++. In: FOSSGIS 2022. Anwenderkonferenz für Freie und Open Source Software für Geoinformationssysteme, Open Data und OpenStreetMap. pp. 203-204. FOSSGIS e.V.. | |
[277] Shinoto, M., Doneus, M., Haijima, H., Weiser, H., Zahs, V., Kempf, D., Daskalakis, G., Höfle, B. & Nakamura, N. (2022): 3D Point Cloud from Nakadake Sanroku Kiln Site Center, Japan: Sample Data for the Application of Adaptive Filtering with the AFwizard. heiDATA. DOI:10.11588/data/TJNQZG. | |
[276] Vos, S., Anders, K., Kuschnerus, M., Lindenbergh, R., Höfle, B., Aarninkhof, S. & de Vries, S. (2022): A high-resolution 4D terrestrial laser scan dataset of the Kijkduin beach-dune system, The Netherlands. Scientific Data. Vol. 9 (1), pp. 191. | |
[275] Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Fassnacht, F.E. & Höfle, B. (2022): Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests. Earth System Science Data. Vol. 14 (7), pp. 2989-3012. | |
[274] Weiser, H., Schäfer, J., Winiwarter, L., Krašovec, N., Seitz, C., Schimka, M., Anders, K., Baete, D., Braz, A.S., Brand, J., Debroize, D., Kuss, P., Martin, L.L., Mayer, A., Schrempp, T., Schwarz, L.-M., Ulrich, V., Fassnacht, F.E. & Höfle, B. (2022): Terrestrial, UAV-borne, and airborne laser scanning point clouds of central European forest plots, Germany, with extracted individual trees and manual forest inventory measurements. PANGAEA. DOI:10.1594/PANGAEA.942856. | |
[273] Weiser, H., Searle, M., Winiwarter, L. & Höfle, B. (2022): Laserscanning simulieren mit HELIOS++ - Eine praktische Einführung. In: FOSSGIS 2022. Anwenderkonferenz für Freie und Open Source Software für Geoinformationssysteme, Open Data und OpenStreetMap. pp. 175-176. FOSSGIS e.V.. | |
[272] Weiser, H., Winiwarter, L., Schäfer, J., Fassnacht, F.E. & Höfle, B. (2022): Airborne laser scanning (ALS) point clouds with full-waveform (FWF) data of central European forest plots, Germany. PANGAEA. DOI:10.1594/PANGAEA.947038. | |
[271] Weiser, H., Winiwarter, L., Zahs, V., Weiser, P., Anders, K. & Höfle, B. (2022): UAV-Photogrammetry, UAV laser scanning and terrestrial laser scanning point clouds of the inland dune in Sandhausen, Baden-Württemberg, Germany. PANGAEA. DOI:10.1594/PANGAEA.949228. | |
[270] Winiwarter, L., Anders, K., Schröder, D. & Höfle, B. (2022): Virtual Laser Scanning of Dynamic Scenes Created From Real 4D Topographic Point Cloud Data. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. V-2-2022, pp. 79-86. | |
[269] Winiwarter, L., Anders, K., Schröder, D. & Höfle, B. (2022): Full 4D Change Analysis of Topographic Point Cloud Time Series using Kalman Filtering. Earth Surface Dynamics Discussions. Vol. 2022, pp. 1-25. | |
[268] Winiwarter, L., Esmorís Pena, A.M., Weiser, H., Anders, K., Martínez Sánchez, J., Searle, M. & Höfle, B. (2022): Virtual laser scanning with HELIOS++: A novel take on ray tracing-based simulation of topographic full-waveform 3D laser scanning. Remote Sensing of Environment. Vol. 269, pp. 112772. | |
[267] Winiwarter, L., Esmorís Pena, A.M., Zahs, V., Weiser, H., Searle, M., Anders, K. & Höfle, B. (2022): Virtual Laser Scanning using HELIOS++ - Applications in Machine Learning and Forestry. In: EGU General Assembly 2022. Vol. EGU22, pp. 1-2. | |
[266] Zahs, V., Winiwarter, L., Anders, K., Bremer, M., Rutzinger, M., Potůčková, M. & Höfle, B. (2022): Evaluation of UAV-borne photogrammetry and UAV-borne laser scanning for 3D topographic change analysis of an active rock glacier. In: EGU General Assembly 2022. Vol. EGU22, pp. 1-2. | |
[265] Zahs, V., Winiwarter, L., Anders, K., Bremer, M., Rutzinger, M., Potůčková, M. & Höfle, B. (2022): Evaluation of UAV-borne Photogrammetry and Laser Scanning for 3D Topographic Change Analysis at an Active Rock Glacier. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLIII-B2-2022, pp. 1109-1116. | |
[264] Zahs, V., Winiwarter, L., Anders, K., Williams, J.G., Rutzinger, M. & Höfle, B. (2022): Correspondence-driven plane-based M3C2 for lower uncertainty in 3D topographic change quantification. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 183, pp. 541-559. | |