Diese Seite ist nur auf Englisch verfügbar.

3DGeo Research Group PermaSAR

Development of a Method to Detect Subsidence by Means of D-InSAR in Permafrost Regions News

  • Funding: DLR – German Aerospace Center
  • Duration 2015 – 2019
  • Contact: Prof. Dr. Bernhard Höfle, Institute of Geography, GIScience, Heidelberg University
  • Project Partner: Alfred Wegener Institut (AWI) Helmholtz Centre for Polar and Marine Research
  • Team: PD Dr. Julia Boike (AWI), Dr. Sofia Antonova, Dr. Inga Beck, Prof. Dr. Bernhard Höfle, Sabrina Marx, Katharina Anders

News

Find all details in the final project report:

  • Antonova, S., Beck, I., Marx, S., Anders, K., Boike, J., Höfle, B. (2019): Vorhabensbezeichnung: PermaSAR: Entwicklung einer Methode zur Detektion von Subsidenz in Permafrostgebieten mit D-InSAR: Schlussbericht: Laufzeit des Vorhabens: 01.04.2015-31.03.2019. Report No. 50EE1418, DOI: 10.2314/KXP:167848864X.

Data acquired in the PermaSAR study region is published on PANGAEA: TanDEM-X DEMs, ALS data, and Multitemporal ground-based data.
Project-related research can be followed on ResearchGate and news in our GIScience News Blog.

Objective

The project PermaSAR aims at developing a novel method for detecting vertical movements of the topography in a low Arctic permafrost region in Canada, based on:

  • ground-truth records (using a differential GPS and subsidence stations)
  • terrestrial laser scanning (TLS) to assess the microtopography and low tundra vegetation
  • RADAR data (TanDEM-X) for differential interferometry (D-InSAR)
  • optical remote sensed data for further analysis and evaluations.
PermaSAR

Motivation

One quarter of the northern hemisphere is covered by permafrost and characterized by seasonal surface thawing (active layer). A warming of the permafrost temperatures has been observed for the last century in this region. Such warming provokes a deeper thawing layer during the summer months; this leads to severe consequences for the local population and the ecosystem. As these thawing and freezing processes of the permafrost are mainly responsible that streets break apart, buildings get cracks and potentially collapse, it is essential for science, economy and stakeholders (e.g. politics) to quantify these processes in order to identify potential subsidence areas (early warning system) and to provide information to the local organization authorities to avoid severe damage.

The start of the TerraSAR-X/TanDEM-X satellites allows detecting fine-scale vertical surface movements by means of differential interferometry (D-InSAR). Previous studies showed the theoretical use of remote sensing data for such surface deformations, but also highlight limitations. The absolute values of vertical movements need improvement: Changing surface parameters (vegetation, microtopography and soil moisture) are also influencing the signal and masking the displacement information.

To overcome these limitations the aim of PermaSAR is to develop a multi-source methodology that improves the detection of vertical movements caused by thawing and freezing processes of the permafrost.

Publications

Tabelle

Höfle, B., Anders, K., Antonova, S., Boike, J., Marx, S. (2019): PermaSAR - Entwicklung einer Methode zur Detektion von Subsidence in Permafrostgebieten mit D-InSAR (in German). In: Zipf, A., Growe, A., Schmidt, S., Klonner, C.: Heidelberger Geographische Gesellschaft (HGG) Journal, 33, pp. 54-56.